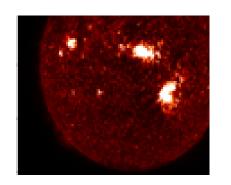
Transfer-Solar-GAN

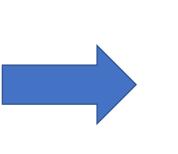
Generation of Input Sources for Solar Wind Models with Deep Learning

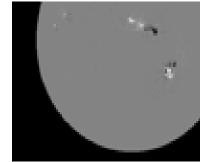
Xiaoyue Li¹, Mark D. Butala¹, Senthamizh Pavai Valliappan², Jasmina Magdalenic²,

Veronique Delouille², Luciano Rodriguez² and Daria Shukhobodskaia²

March 24, 2022







1) Introduction

- Motivation --- EUHFORIA model
- Related work
- Problems

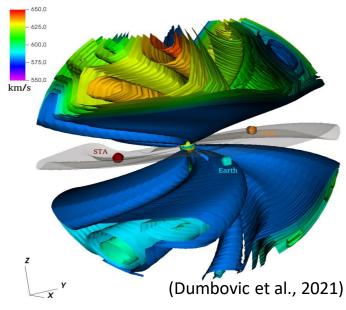
2) Method

- 3) Results and Evaluations
- 4) Summary and Conclusion

- EUHFORIA : A physics-based, forecasting-targeted inner heliosphere model
 - Solar wind relaxation, CME insertion and forecast
- GONG synoptic line-of-sight magnetograms are used as boundary conditions
- EUV imagers are more numerous, but not used as input into physics-based models like EUHFORIA

- More intensively used
- More complex situations (CME modeling, farside points,...)
- Timely, Solar Orbiter & Parker Solar Probe are available

Fundamental question: How to use numerous EUV images to produce boundary conditions for a solar wind model?

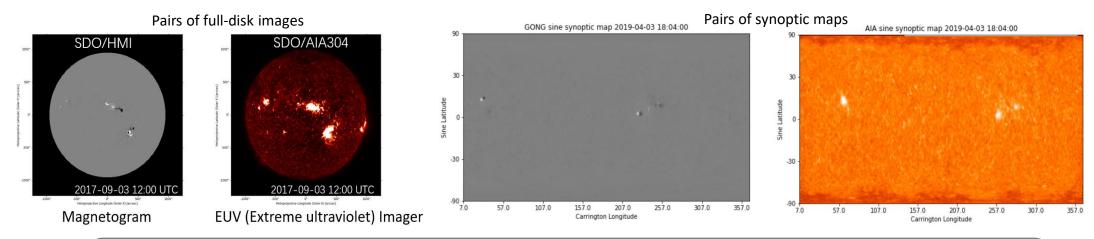


Solar wind modeled by EUHFORIA

- A Generative Adversarial Network (GANs) is a type of neural-network model that performs image-to-image translation
- Kim, et al. (Nature Astronomy, 2019) suggested generating solar farside magnetograms from STEREO/EUVI 304 Å observations using a deep learning model
- Jeong et al. (in preparation) developed, pix2pixCC [1], which generates more realistic magnetic flux

Problems

- Limited number of AIA sine synoptic maps which coincide with GONG synoptic maps
- Large, specially prepared dataset of AIA and HMI images exists for training the source model [2]
- Generating a daily updated, synoptic map dataset is time-consuming
- Overexposed or underexposed strips due to the camera exposure time or image quality key-factors



- Transfer learning is a good choice to solve limited data problem
- A simple yet effective scheme called FreezD has been used for transfer learning of GANs [3]

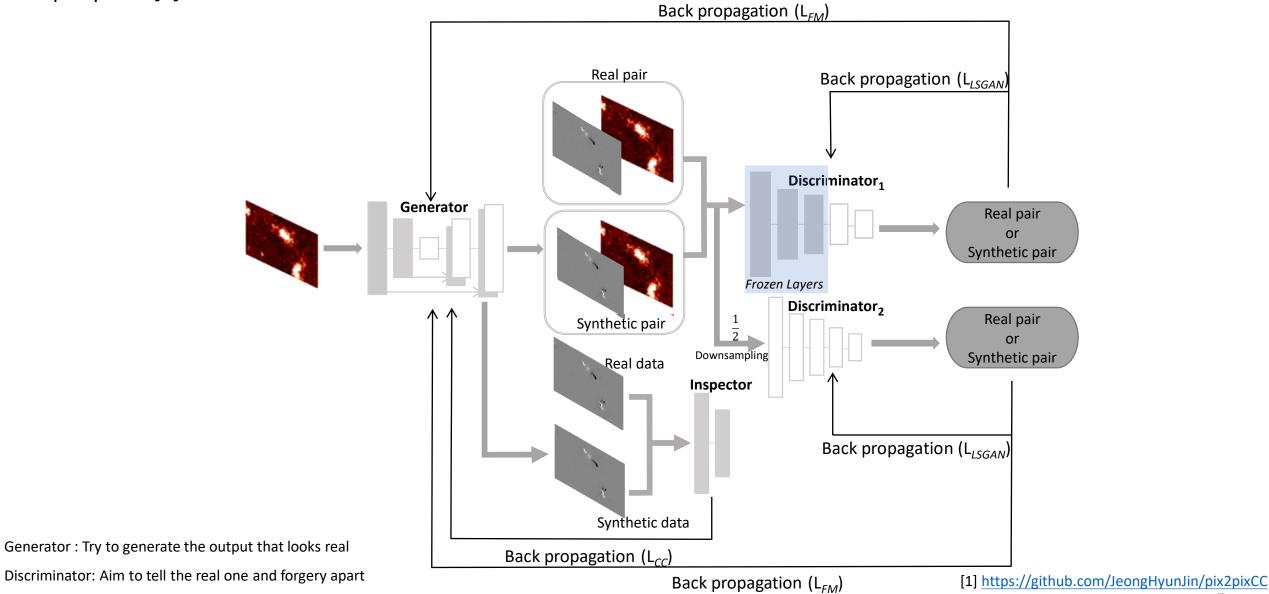
[2] R. Galvez et al. A machine learning dataset prepared from the NASA Solar Dynamics Observatory mission. The Astrophysical Journal Supplement, 242(1), 2019.
[3] Mo S, Cho M, Shin J. Freeze the Discriminator: a simple baseline for fine-tuning GANs. CVPR AI for Content Creation Workshop, 2020.

Datasets used in this project							
	Dataset^[4] for Source Model Time Frame: 6 hr cadenced from 2011 to 2018		Dataset for Target Model Time Frame: CR2097 to CR2251 with 1 Carrington rotation cadenced *				
Training Set	Test Set	Training Set	Test Set				
8115	1005	135	10				

*With data augmentation: flipping horizontally and vertically, with 180-degree rotation to increase the training dataset volume

Method

pix2pixCC [1] is the foundation for this model •

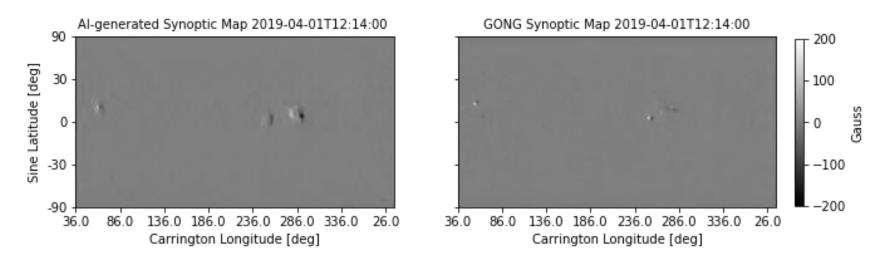


Discriminator: Aim to tell the real one and forgery apart

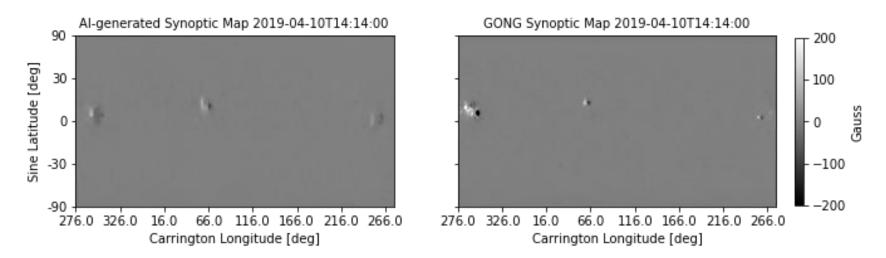
Inspector: Guide the generator to be well trained by computing correlation coefficient

Results

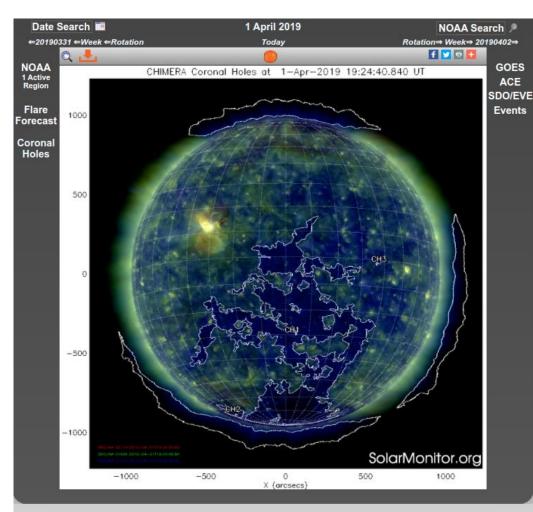
2019-04-01T12:14:00



2019-04-10T14:14:00

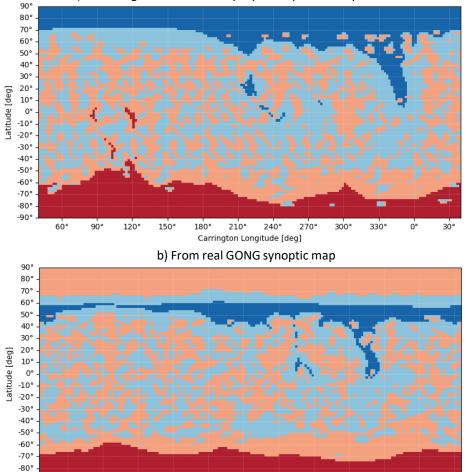


Evaluation from EUHFORIA



	To	day's Coronal	Hole Propertie	S	
CHIMERA Number	Centroid [Heliocentric]	Width [°]	Area [%]	< B > [G]	<Φ> [Mx]
1	W05S42 (66",-565")	E54-W41 (95)	18.9	-0.5	-3.8e21
2	E67S68 (-332",-869")	E74-E50 (24)	0.2	-0.3	-2.7e20
3	W37S01 (583",70")	W36-W39 (3)	0.0	-0.9	-1.3e19

Open & closed field regions at inner boundary 2019-04-01T12:14:00



a) From AI-generated GONG synoptic map with fuzzy features

Field connectivity information is coded as:

150°

180°

120°

-90°

60°

90°

+/- 2 : open field with positive/negative polarity at footpoint +/- 1 : closed field with positive/negative polarity at footpoint

210°

Carrington Longitude [deg]

240°

270°

300°

330°

9

0°

30°

-1

-2

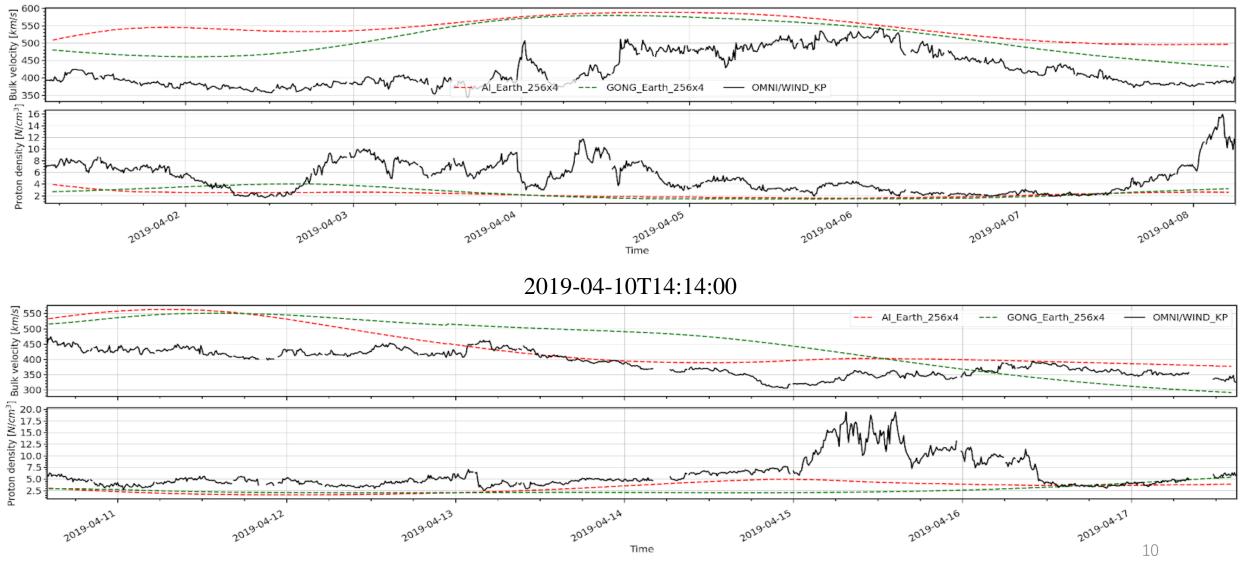
0

 $^{-1}$

Evaluation from EUHFORIA

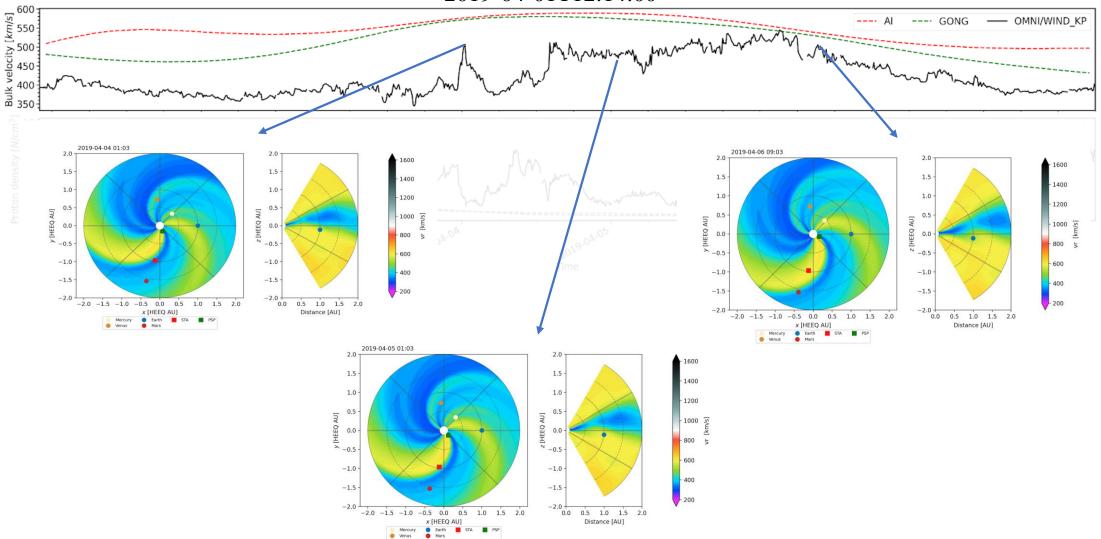
Radial speed and proton density at the position of Earth as a function of time

2019-04-01T12:14:00



Evaluation from EUHFORIA

2019-04-01T12:14:00



Summary and Conclusion

- Image-to-image translation (pix2pixCC)
- Transfer learning (FreezD) to solve limited shot image-generated problem
- Analysis of EUHFORIA model error introduced by the AI-generated magnetogram
- Next steps:
 - How to improve the quality of AI-generated magnetograms, with focus on coronal hole regions?
 - Data Input: Multi-channel preprocessed input data, selecting proper weighting factor for synoptic map generation
 - Network Structure : Multi-header, self-attention GAN which can focus more attention to coronal holes region / structure

- We thank Jeong et al. for sharing the pix2pixCC code (<u>https://github.com/JeongHyunJin/pix2pixCC</u>)
- We thank Galvez et al. to share their well-prepared machine learning dataset including AIA and HMI fulldisk images from 2011 to 2018. The data are available through the Stanford Digital Repository (<u>https://purl.Stanford.edu</u>)
- We thank all the team members of the SDO mission, STEREO mission, GONG mission and acknowledge efforts devoted to the open-source solar data analysis Python packages: sunpy, astropy and aiapy
- GONG maps are available from National Solar Observatory (<u>https://gong.nso.edu/data/magmap/QR/bq1/</u>)

Summary and Conclusion

- Image-to-image translation (pix2pixCC)
- Transfer learning (FreezD) to solve limited shot image-generated problem
- Analysis of EUHFORIA model error introduced by the AI-generated magnetogram
- Next steps:
 - How to improve the quality of AI-generated magnetograms, with focus on coronal hole regions?
 - Data Input: Multi-channel preprocessed input data, selecting proper weighting factor for synoptic map generation
 - Network Structure : Multi-header, self-attention GAN which can focus more attention to coronal holes region / structure

Thank you for joining! 14