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Introduction 

● Solar energetic particles (SEP) are high-energy particles usually originating from solar eruptions, and they are composed of 

protons, electrons, and some heavy ions with energy ranging from a few tens of keV to several GeV 

● All man-made space instruments are continuously exposed to SEPs that permeate the space environment 

● That continuous exposure to solar particle radiation leads to charges to build up on the satellites and the spacesuits of 

astronauts, which cause electrical discharges, malfunctioning, and radiation sickness and increased risk of cancer 

● Additionally, the highest energetic protons (>100 MeV) can enhance neutron count rates at ground levels through secondary 

radiation effects, which are known as Ground Level Enhancements (GLEs) which in turn cause problems on Earth 

● Therefore, it is essential to study the SEPs and forecast their flux at the near-Earth orbit

● In this work, we implement a short-term and long-term forecasting models to predict the solar protons integral flux at 1 AU 

using the Bi-directional Long Short-Term Memory (LSTM) neural network technique 



Bi-LSTM Neural Network Model 

● The LSTM networks are a subset of the Recurrent Neural 

Network (RNN) used in deep learning to address 

contextual information by integrating a loop that allows 

information to flow from one time step to the next 

● This is managed by learning when to remember and when 

to forget, through their forget gate weights 

● In the case of the Bi-directional LSTM network, the input 

flows in two directions to preserve the future and the past 

information, which gives better results in our case 

compared to the regular LSTM model 

● This diagram shows the flow of a time series X with C

features of length S through a regular LSTM layer — Here, 

ht and ct denote the output (also known as the hidden 

state) and the cell state at time step t, respectively 

Source: MathWorks



Bi-LSTM Neural Network Model – cont. 

● The Bi-LSTM layer is made up of 2 layers – the 

forward layer and the backward layer 

● The forward layer process the information from the 

past to the future (+ time direction), and the 

backward layer does the opposite (- time direction) 

● Here, A and A’ are the activation cells in the forward 

and backward layers, respectively 

● Xi and Yi are the input and output sequences, 

respectively 

● S and S’ are the hidden states in the forward and 

backward layers, respectively 

Source: colah’s blog 



Bi-LSTM Neural Network Model – cont. 

The LSTM unit is composed of a cell, an input gate, an output gate 

and a forget gate — The cell remembers values over the time 

steps and the 3 former gates adjust the information stream into 

and out of the cell

This diagram shows the flow of data at time step t and highlights 

how the gates forget, update, and output the cell and hidden 

states — Here, f, g, i, o are the forget gate, the cell candidate, the 

input gate, and the output gate, respectively 

Source: MathWorks



Bi-LSTM Neural Network Model – cont. 

We used 9 features –

the sunspot number; obtained from the World Data Center for the 

production, preservation, and dissemination of the international sunspot 

number; 

the solar radio flux density, the IMF, the SW speed, and the proton 

integral flux at 3 energy channels (>10 MeV, >30 MeV, and >60 MeV) 

obtained from OMNI database; 

the long- and short-wavelength bands of X-ray flux; obtained from 

GOES database 

The reason for choosing those features is because the dynamics of the solar 

activity influence the protons flux since they travel within the inner 

heliosphere — By doing correlation analysis, we selected the top 6

correlated features with the proton flux for each energy channel 

Source: MathWorks



Bi-LSTM Neural Network Model – cont. 

The data is split into 75% (from 1976 to 2008) for training the model and 25% (from 2008 to 2019) for validating 

the performance

A multivariate multi-step Bi-LSTM NN model is implemented, based on the Multiple Output Strategy, to forecast 

the integral protons flux in 3 energy channels (>10 MeV, >30 MeV, and >60 MeV) throughout the following 6 hour, 

12 hours, and 24 hours for the short-term mode – and throughout the following 3 days, 5 days, and 7 days for the 

long-term mode 

N_layer: 2 Bi-LSTM layers + 1 Dense layer 

N_cells: 32 

Batch size: 512, Epochs: 70 

N_input timesteps: 730 (~24 days) → daily data 

N_input timesteps: 720 (~30 hours) → hourly data 



Example of
Hourly Data



6-hr pf >10 MeV 



Loss curve to check the performance using MSE and MAE as the error metrics 

Results: 6-hr forecasting of proton flux >10 MeV 



Comparison between the model’s output and the validation set, with the rolling-window 
Pearson corr. of window size = 90 

Results: 6-hr forecasting of proton flux >10 MeV — cont. 



Comparison between the rea and modelled data – parts of the validation set 

Results: 6-hr forecasting of proton flux >10 MeV — cont. 



Example of
Daily Data



3-day pf >10 MeV 



Loss curve to check the performance using MSE and MAE as the error metrics 

Results: 3-day forecasting of proton flux >10 MeV 



Comparison between the model’s output and the validation set, with the rolling-window Pearson 
corr. of window size = 90 

Results: 3-day forecasting of proton flux >10 MeV — cont. 



Comparison between the rea and modelled data – parts of the validation set 

Results: 3-day forecasting of proton flux >10 MeV — cont. 



Prediction Errors for the Validation Set 

pf >10 MeV pf >30 MeV pf >60 MeV

MSE = 0.012
MAE = 0.070

MSE = 0.354
MAE = 0.487

MSE = 0.290
MAE = 0.447

7-day

pf >10 MeV pf >30 MeV pf >60 MeV

MSE = 0.012
MAE = 0.065

MSE = 0.370
MAE = 0.498

MSE = 0.294
MAE = 0.446

pf >10 MeV pf >30 MeV pf >60 MeV

MSE = 0.009
MAE = 0.054

MSE = 0.382
MAE = 0.505

MSE = 0.334
MAE = 0.476

5-day

3-day

pf >10 MeV pf >30 MeV pf >60 MeV

MSE = 0.173
MAE = 0.305

MSE = 0.536
MAE = 0.632

MSE = 0.442
MAE = 0.571

24-hr

pf >10 MeV pf >30 MeV pf >60 MeV

MSE = 0.173
MAE = 0.305

MSE = 0.536
MAE = 0.632

MSE = 0.442
MAE = 0.571

pf >10 MeV pf >30 MeV pf >60 MeV

MSE = 0.001
MAE = 0.027

MSE = 0.618
MAE = 0.676

MSE = 0.442
MAE = 0.571

6-hr

12-hr



Conclusion 

● We implemented forecasting models to do short-term and long-term forecasting for the integral protons flux in 3 

energy channels based on the data of the previous 4 solar cycles and by using 7 input features that reflect the 

solar activity state 

● The MSE of prediction of the PF>30 MeV channel is generally the highest in both the long-term and short-term 

forecasting, while the MSE for the PF>10 MeV is the lowest 

● For the long-term forecasting, the MSE increases at larger future horizons, as expected, except for the PF>30 

MeV and PF>60 MeV — The MSE for the PF>10 MeV is similar up to 3 digits for the 5-day and 7-day forecasting 

● The MSE for the PF>10 MeV is similar up to 3 digits for the 12-hr and 24-hr forecasting. The same applies for the 

PF>30 MeV 

● The MSE for the PF>60 MeV is similar up to 3 digits for the 3 forecasting windows, which means that changing 

the future horizon has very little impact on the model performance 

● The model still needs more fine-tuning and the performance can potentially be greatly improved 



Thank You! 


