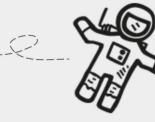


Laboratory for Atmospheric and Space Physics University of Colorado **Boulder** 

## Data Augmentation of Magnetograms for Solar Flare Prediction using GANs

WX TREC


Allison Liu<sup>1</sup>, Wendy Carande<sup>1</sup>

<sup>1</sup> Laboratory for Atmospheric and Space Physics

<u>allison.liu@lasp.colorado.edu</u>

## Motivation





#### Solar Research

We care to characterize and understand the Sun...it gives us life!

#### **Protecting Astronauts**

High-energy solar radiation is harmful to the human body and can cause biological damage



#### **Space Exploration**

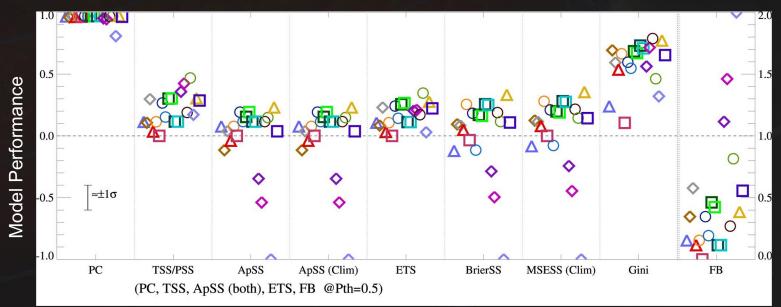
Accurate solar flare prediction is a concern that inhibits space travel



#### Communications

Large solar flares can disrupt critical infrastructure like the power grid, GPS, and radio communications




# SpaceX loses 40 satellites to geomagnetic storm a day after launch

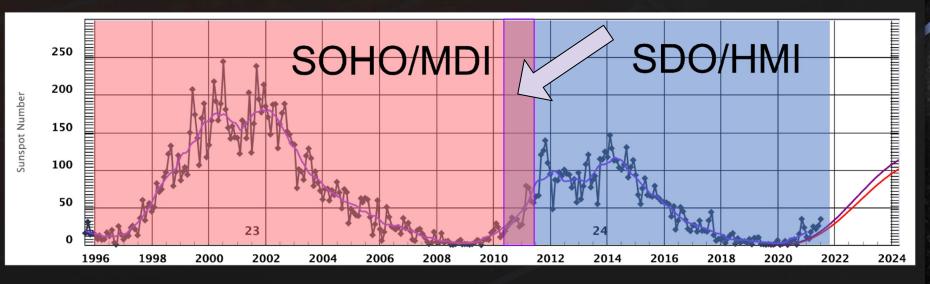
🕓 9 February



## Background

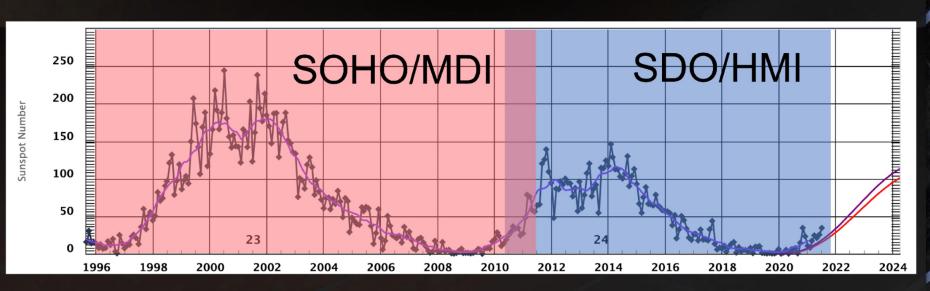
- Solar flare prediction is done largely by humans → Machine Learning ~ 2010
- The operational model used by the Space Weather Prediction Center (SWPC) is a human-in-the-loop climatology-based forecast model




#### **Evaluation Metrics**



A Comparison of Flare Forecasting Methods II. Leka et al. (2019) Data augmentation of magnetograms for solar flare prediction using GANS. ML-Helio 2022: A Liu


#### Goal

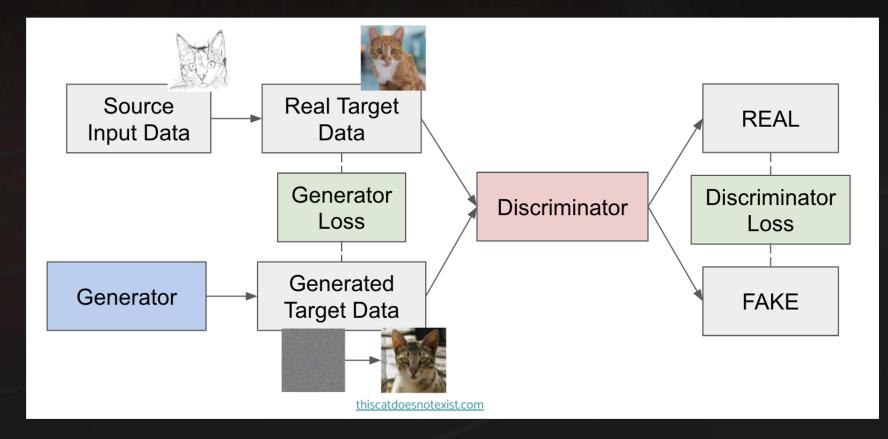
- **Problem:** the two magnetogram datasets used for solar flare prediction differ in resolution and field of view, so the older SOHO/MDI dataset is often unused in training of solar flare prediction models
- The goal of this project is to create a combined dataset that could improve the accuracy of solar flare prediction models by incorporating data which spans an additional solar cycle.





## **Data and Preprocessing**




• We use line-of-sight, full-disk magnetograms from:

- the NASA Solar Dynamic Observatory/Helioseismic and Magnetic Imager (SDO/HMI), 720 sec cadence.
- the Solar and Heliospheric Observatory/Michelson Doppler Interferometer (SOHO/MDI), 96 min cadence.
- Preprocessing: Images with holes or missing header files removed



#### **Generative Adversarial Networks (GANs)**

GANs are a class of generative models, which are useful for creating new data instances.



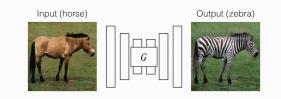


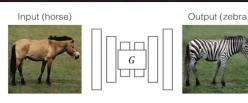
## **Model Exploration**

#### Image Translation: Most models require INPUT $\rightarrow$ **OUTPUT** training pairs

Pix2Pix (Isola et al. 2016) Paired

Ground truth Input Output () 1

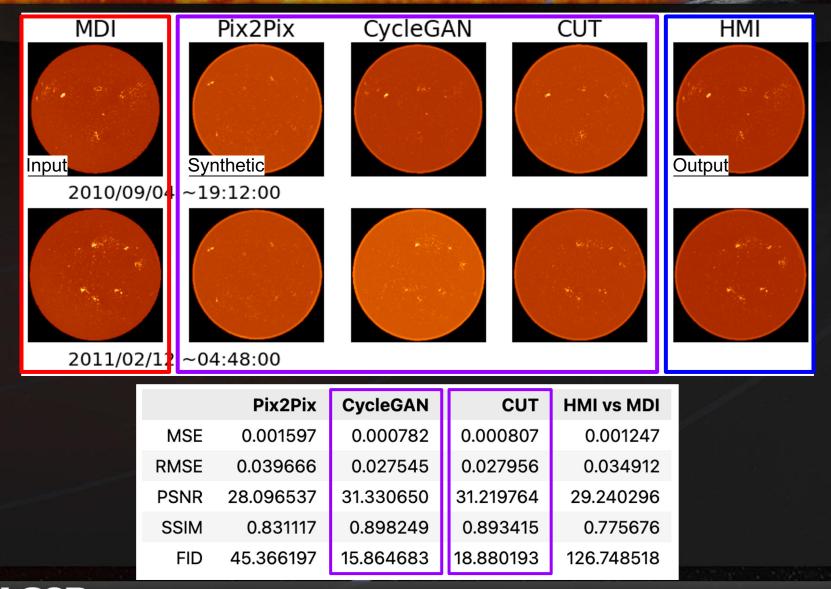

CycleGAN (Zhu et al. 2017)


Unpaired

CUT (Park et al. 2020)

Unpaired

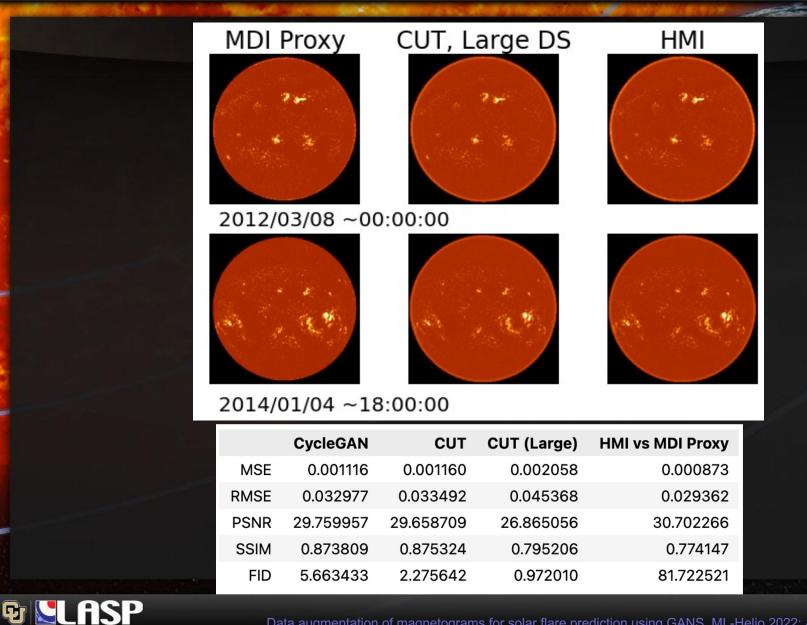
Model training is faster and less memory-intensive



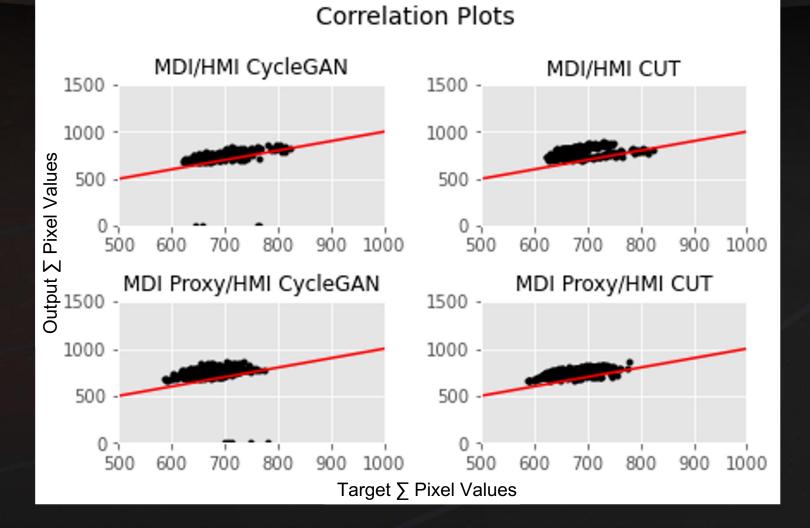





Çj


#### **Preliminary Results - Magnetograms**




#### **Preliminary Results - Magnetograms**

| MDI F        | ADI Proxy Cyc |                               | eGAN CUT  |             | -      | HMI       |  |
|--------------|---------------|-------------------------------|-----------|-------------|--------|-----------|--|
| Input<br>201 | 10/07/1       | S <u>ynthetio</u><br>6 ~09:36 |           |             |        | Output    |  |
| 201          | 10/09/1       | 6 ~04:48                      | 3:00      |             |        |           |  |
|              |               | CycleGAN                      | CUT       | CUT (Large) | HMI vs | MDI Proxy |  |
|              | MSE           | 0.001116                      | 0.001160  | 0.002058    |        | 0.000873  |  |
|              | RMSE          | 0.032977                      | 0.033492  | 0.045368    |        | 0.029362  |  |
|              | PSNR          | 29.759957                     | 29.658709 | 26.865056   |        | 30.702266 |  |
|              | SSIM          | 0.873809                      | 0.875324  | 0.795206    |        | 0.774147  |  |
|              | FID           | 5.663433                      | 2.275642  | 0.972010    |        | 81.722521 |  |

#### **Preliminary Results - Magnetograms**



#### **Preliminary Results - Analysis**





## Conclusions

Unpaired models like CycleGAN and CUT are promising for translating SOHO/MDI magnetograms to SDO/HMI quality.

 Both models perform similarly, with CUT having faster training times and appearing to resolve finer features more accurately

#### **Next Steps:**

- Feature alignment and per-pixel accuracy analysis
- Try running models on full-resolution magnetogram data



## Acknowledgements

- Dr. Wendy Carande
- Katy Luttrell
- Tom Berger

#### Contact

Allison Liu allison.liu@lasp.colorado.edu

Wendy Carande wendy.carande@lasp.colorado.edu

This project was funded by the SWx TREC Deep Learning Laboratory and NSF REU Program, award #1659878







## **Appendix: Downsampling Image Pairs**

#### Downsampling:

- Using Gaussian filter with FWHM 4.7 HMI px and truncated at 15 HMI px.
- Downsizing from 4096x4096 px to 1024x1024 by averaging using a bicubic interpolation over a 4x4 px neighborhood (using cv2 implementation of resize).
- Correcting for pixel values using the equation MDI = -0.18 + 1.4\*HMI
- This was the procedure done in Y Liu 2012, comparing HMI and MDI data

|      | MDI vs HMI | MDI Proxy vs HMI |
|------|------------|------------------|
| MSE  | 0.001247   | 0.000873         |
| RMSE | 0.034912   | 0.029362         |
| PSNR | 29.240296  | 30.702266        |
| SSIM | 0.775676   | 0.774147         |

#### MDI vs MDI Proxy FID: 6.753753003016939



Comparison of LOS Magnetograms Taken by SDO/HMI and SOHO/MDI. Y Liu et al (2012) Data augmentation of magnetograms for solar flare prediction using GANS. ML-Helio 2022: A Liu