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Introduction




n Introduction

Sun and Space Weather Group in Kyung Hee University

We have applied deep learning (DL) to various types of
solar and space weather data and tasks

Our goal:

1) To improve space weather prediction models

2) To fill in observation blanks

3) To calibrate observational data such as denoising
4) To study whether DL-generated data are feasible for scientific data or not

Recently, we have applied image translation methods based on deep learning to vari-

ous solar and space weather data.




n Introduction

Why image translation?

Magnetogram EUV H-alpha

them are observed simultaneously.
-> |t is a good condition for applying the image translation algorithms.

CakK

There are various types of multi-filter observations in solar and space weather, and many of
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Generation of Solar Far-side
Magnetograms
from STEREO/EUVI Images

Kim, Park, Lee et al., 2019

Jeong et al., 2020
Park et al., 2021
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NASA’s STEREO (with SDO) Sees the Entire Sun
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Solar magnetograms are limited
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NASA’s STEREO (with SDO) Sees the Entire Sun
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of the Sun

Solar magnetograms are limited
SDOJAIA 304 A SDO/HMI to the frontside solar disk

We design a model for the translation from solar EUV images to solar magnetograms
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Generative Adversarial Network (GAN)
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GAN is one of the popular deep learning methods in generation and translation tasks.
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Generative Adversarial Network (GAN)
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n Generation of Solar Farside Magnetograms

Generative Adversarial Network (GAN)

Real
Generative Discriminative
network @ network
<4 Sigmoidfunction
Input G Fake m
(Al-generated )

Convolution layers
’ distinguishes the real data

from the fake data.
generates real-like fake data pete
using input data. \ Com

We train the Generator and the Discriminator, this process looks like a competition between the two networks.

\
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Structure of our model for the translation from solar EUV images to solar magnetograms

SDOI/AIA Generated
304 A image magnetogram

> Generator —
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magnetogram
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n Generation of Solar Farside Magnetograms

Structure of our model for the translation from solar EUV images to solar magnetograms

SDOI/AIA Generated
304 A image magnetogram

> Generator —

Real?
SDO/HMI Discriminator = or
) magnetogram
We use SDO/AIA 304 angstrom images Fake?

as input data and SDO/HMI magnetograms
as target data for the training and testing.
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Structure of our model for the translation from solar EUV images to solar magnetograms

SDOI/AIA Generated
304 A image magnetogram_ npistinguishes real SDO/HMI magnetograms
from generated magnetograms

> Generator —

Real?

SDO/HMI Discriminator = or
magnetogram
Fake?
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Structure of our model for the translation from solar EUV images to solar magnetograms

SDOI/AIA Generated
304 A image magnetogram

> Generator —

Real?
. . SDO/HMI Discriminator = or
Training Step magnetogram
Fake?

The generator generates magnetograms using
SDO/AIA images, and then the discriminator
tries to distinguish the generated magne-

tograms from real SDO/HMI magnetograms.
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Structure of our model for the translation from solar EUV images to solar magnetograms

SDOI/AIA Generated Back-propagation,
304 A image magnhetogram Network update

> Generator —

Real?
. . SDO/HMI Discriminator = or
Training Step magnetogram
Fake?

Then the model back-propagates the result to the
generator and the discriminator. The generator up-

dates itself to generate more real-like magnetograms
to

fool the discriminator. The discriminator also updates
itself to increase its discrimination accuracy.

Back-propagation,
Network update
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Structure of our model for the translation from solar EUV images to solar magnetograms

SDOI/AIA Generated
304 A image magnetogram

> Generator —

Comparison by

SDO/HMI model performance score

Evaluation Step magnetogram

We use only the generator network. The generator
produces magnetograms using SDO/AIA images, and
then we compare the generated magnetograms with
SDO/HMI magnetograms to estimate the model
performances.
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Structure of our model for the translation from solar EUV images to solar magnetograms

STEREO/EUVI Farside
304 A image Magnetogram
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Kim, Park, Lee et al. (2019) suggest a deep learning model for generating solar farside magnetograms from
STEREO/EUVI observations. The result shows that we could monitor the temporal evolution of magnetic fields
from the solar far side to the solar front side using DL-generated data.
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However, this study is limited to the maximum magnetic field strength of 100 G and shows low correlations
in solar quiet regions.
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“AISFM* Ver 1.0 “AISFM Ver 2.0

. :
Al-generated Solar Farside Magnetogram Generate data
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EUV 304 A EUV 304 /:\
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Jeong et al. (2020) upgrade the model with 3,000 Gauss dynamic range to generate more realistic magnetic fluxes,
and with multi-channel input to improve the generation of quiet regions.
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“ AISEM* Ver 1.0
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Three Objective Measures of Comparison between SDO/HMI Magnetograms
and Al-generated Ones for Full Disk, ARs, and QRs

Full Disk

AR

QR

825 images

1,033 patches

825 patches

-1000 / =500 a 1 500 1004 ~1000 / =500 '0 500 10Q0
He}i’opmjective Léngitud.e (X) [arcsec) He)i’oproiective Lqngitude (X) [arcseal
- ; :
< i B | -
—100 q 300 5}*_ 1 _100 300 fe
g B e g
o ek Gk o L4 o e
-150 2 250 B vm"":.' 3 -150 i L 250 ¢ ‘,-»f'f
i i ;’ W 5 i : ) r £ ‘,'.5 J. ot
=100 =30 0 600 650 700 =100 =50 0 6800 B850 700
X [arcsec] X [arcsec] X [arcsec] X [arcsec]

-3000 -2000 -1000 O 1000 2000 3000
LOS Magnetic Field [Gauss]

—3000 -2000 —-1000 O 1000 2000 3000
LOS Magnetic Field [Gauss]

(1,024 x 1,024 (128 x 128 (128 x 128
pixels) pixels) pixels)
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magnetic flux CC
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flux CC
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The model (AISFM Ver 2.0) generates both the active and quiet regions more realistically than the previous model (A-

ISFM Ver 1.0) and shows better results in quantitative comparisons.




Generation of Solar Farside Magnetograms

A series of full-disk EUV images and magnetograms
yellow boxes show the tracking of solar active regions over a solar rotation
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The model generates solar active regions with more realistic magnetic field strengths.
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Coronal Hole

Photospheric Fields Coronal Extrapolation Observations

We extrapolate the global coronal magnetic field from the Al synchronic maps using Potential
Field Source Surface (PFSS) model, then compare the results with coronal observations.

Open field lines, which are computed by the PFSS model, arriving at the source surface are associated with coronal holes.
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Comparison between farside solar EUV observations and results of PFSS extrapolations
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The extrapolation results using Al synchronic data well represent the appearance of the active region and the coronal
hole,

Lt | ith the of ons.
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“AISFM 3.0
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We are trying to improve our model by providing solar frontside data to the model as reference information.
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Public release of solar farside magnetograms soon

-A: 2011.01 ~ 2019.12 (~ 47 GB)
-B:2011.01 ~ 2014.09 (~ 21 GB)
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We are going to release the solar farside magne- kocsrsoo |, ]/JJ |
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tograms and Al synchronic maps through Korean
Data Center (KDC) for SDO in Korean Astronomy and
Space Science Institute (KASI).
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De-noising SDO/HMI Magnetograms

Park et al., 2020




n Denoising SDO/HMI Magnetogram

Liu+ (2012) reported that

olution HMI 45-second magnetograms is 10.2 G, and

6.3 G for the 720-second magnetograms.”
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n Denoising SDO/HMI Magnetogram

Several studies investigated weak solar magnetic field structures such as solar intra-
network and small bi-poles by integrating magnetic field observations to increase the
signal-to-noise ratio (Wang et al. 1995; Schrijver et al. 1997; Chae et al. 2001).

Several studies tried to reduce the noise level of solar magnetograms by several types
of computing algorithms (DeForest 2017; DiasBaso et al. 2019).

In this study, we apply two deep learning methods to denoising SDO/HMI magne-
tograms.




n Denoising SDO/HMI Magnetogram

Original HMI Denoised HMI
(Input) (Target)

DL Model

We design a deep learning model that translates from original magnetograms to corresponding de-
noised magnetograms.

-> We need pairs of the original magnetograms and the denoised magnetograms to train the model.
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Helioprojective Latitude (Solar-Y) [arcsec]
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n Denoising SDO/HMI Magnetogram

Input: Center frame Mag.

< About 15 mins >

Target: 21-frame-stacked Mag.

e —

We integrate 21 magnetogram patches that include 10 frames before and 10 frames after the
input magnetogram patch considering solar rotation. A stacked magnetogram has approxi-

mately 15 minutes of exposure time.
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Original HMI
(Input)

DL Model

We prepare the pairs of the original magnetograms and the stacked magnetograms.

Stacked HMI




n Denoising SDO/HMI Magnetogram

Original HMI Denoised (M1)
(Input) (Model output)

We prepare the pairs of the original magnetograms and the stacked magnetograms.
The model
1) generates the denoised magnetograms using the original magnetograms,

Stacked HMI




g Denoising SDO/HMI Magnetogram

Original HMI Denoised (M1) Stacked HMI
(Model output)

Loss

We prepare the pairs of the original magnetograms and the stacked magnetograms.
The model

1) generates the denoised magnetograms using the original magnetograms,
2) calculates the difference between the denoised and the stacked magnetograms,




n Denoising SDO/HMI Magnetogram

Original HMI Denoised (M1) Stacked HMI
(Input) (Model output)

Loss

Model update

We prepare the pairs of the original magnetograms and the stacked magnetograms.
The model

1) generates the denoised magnetograms using the original magnetograms,

2) calculates the difference between the denoised and the stacked magnetograms,
3) back-propagates the difference, and updates itself to minimize the difference.
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Comparisons between the original, stacked, and denoised magnetograms

2013-04-01 00:00 UT
ennised (M1), 0=2.8 denoised (M1) - stacked 30

__/‘* .

stacked, 0=3.0

20

10

-10

-20

-30

The denoised magnetograms by our model are consistent with the stacked ones.




n Denoising SDO/HMI Magnetogram

Histograms of magnetic flux densities from
the original, stacked, and denoised magnetograms
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8000 e Original, 0 = 8.5
e stacked, 0= 3.0
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0.
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The histograms of the denoised magnetograms are similar to those of the stacked ones,
and their noise levels are almost same.




n Denoising SDO/HMI Magnetogram

« Our model based on image translation method successfully reduce the noise level
of SDO/HMI magnetograms.

* This method can be applied only when we have of the original magnetograms
(input) and the denoised magnetograms (target).

* The quality of the model outputs can be affected by the condition of the target data,
such as the number of frames for the stacked magnetograms.




n Denoising SDO/HMI Magnetogram

« Our model based on image translation method successfully reduce the noise level
of SDO/HMI magnetograms.

« This method can be applied only when we have pairs of the original magnetograms
(input) and the denoised magnetograms (target).

* The quality of the model outputs can be affected by the condition of the target data,
such as the number of frames for the stacked magnetograms.

* We design an additional model (M2) based on AutoEncoder method that can train
without target magnetograms.
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Original HMI Stacked HMI
(Target)

DL Model

The dataset is the same as the previous study, but we will not use the stacked magnetograms.
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Training
Original HMI Step Noise-Added
(Target) (Input)

DL Model

We prepare the original magnetograms and add random Gaussian noise to the magnetograms.
The noise distributions are similar to those of the original ones.
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Training
Original HMI Step Noise-Added Denoised (M2)
(Target) (Input) (Model output)

Add Noise — —> DL Model

We prepare the original magnetograms and add random Gaussian noise to the magnetograms.
The model
1) generates the denoised magnetograms using the noise-added magnetograms,
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Training

(Target) (Inpu)

&

(Model output

A

i

—p DL Model

Loss

We prepare the original magnetograms and add random Gaussian noise to the magnetograms.
The model

1) generates the denoised magnetograms using the noise-added magnetograms,

2) calculates the difference between the denoised and the original magnetograms,

Original HMI Step Noise-Added Denoised (M2)

)




n Denoising SDO/HMI Magnetogram

Training
Original HMI Step Noise-Added Denoised (M2)
(Target) (Input) (Model output)

—p DL Model

Model update

Loss

We prepare the original magnetograms and add random Gaussian noise to the magnetograms.
The model

1) generates the denoised magnetograms using the noise-added magnetograms,

2) calculates the difference between the denoised and the original magnetograms,

3) back-propagates the difference, and updates itself to minimize the difference.
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Original HMI Denoised (M2)
(Input) (Model output)

Generation Step

DL Model

The model generates the denoised magnetograms using the original magnetograms.
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Comparisons between the original, stacked, and denoised magnetograms

2013-04-01 00:00 UT
ennised (M2), o0=3.5 denoised (M2) - stacked 50
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The denoised magnetograms by our AutoEncoder model are consistent with the stacked ones
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Histograms of magnetic flux densities from
the original, stacked, and denoised magnetograms
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The histograms of the denoised magnetograms are similar to those of the stacked ones
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Comparisons between original, stacked, and denoised magnetograms by two models

2013-04-01 00:00 UT
ennised (M1), 0=2.8

stacked, 0=3.0 denoised (M2), 0=3.5 30

20

The denoised magnetograms by two models are consistent with each other.

M1: Image translation model, M2: AutoEncoder model
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Histograms of magnetic flux densities from
the original, stacked, and denoised magnetograms by two models
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The denoised magnetograms by the two models are similar to each other
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Application of our models to 21 frames of original SDO/HMI magneotgrams
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M1: Image translation model

M2: AutoEncoder model
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After the training, we can denoise SDO/
HMI magnetograms without stacking.
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Application of our model to a full-disk SDO/HMI magnetogram: center of disk

HMI magnetogram 2017-09-04 23:59:04
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Original, noise level: 9.1 G (M1: Image Translation) (M2: AutoEncoder)
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Application of our model to a full-disk SDO/HMI magnetogram: near the limb

HMI magnetogram 2017-09-04 23:59:04
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Helioprojective Latitude (SolarY) [arcsec]
Helioprojective Latitude (SolarY) [arcsec]

100" 100"

-800" -700" -600" -800" . —00" - -600" - -800" -700" -600" l
Helioprojective Longitude (Solar-X) [arcsec] Helioprojective Longitude (Solar-X) [arcsec] Helioprojective Longitude {Solar-X) [arcsec]
Denoised, noise level: 4.5 G Denoised, noise level: 4.9 G

Original, noise level: 10.7 G (M1: Image Translation) (M2: AutoEncoder)




n Denoising SDO/HMI Magnetogram

 The image-translation method can be applied to denoising solar and
space weather data if we can build many target noise-reduced data.

« Ifitis difficult to build the denoised target data, the AutoEncoder

method can be applied to denoising solar and space weather data as an
alternative.




3 Generation of Modern Satellite Images
from Galileo sunspot drawings in 1612

Lee et al., 2021




n Generation of Satellite Image from Galileo Sunspot

Labels to Street Scene Labels to Facade BW to Color

input output input output
Day to Night

output
Isola et al. 2017

We have similar data to this example, that is sunspot drawings.




n Generation of Satellite Image from Galileo Sunspot

. s

generated 94 A generat_é& 131 A generated 171 A

Galileo Galilei
sunspot i

http://galileo.rice.edu/sci/observations/sunspot_drawings.html

Itle: Generation of Modern Satellite Data from Galileo Sunspot Drawings by Deep Learn-

ing
__Author: Harim Lee

.

genérétéucﬂ 93 A generated 211 A generated 304 A generated 335 A




THANK YOU
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