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0 Introduction
We have applied deep learning (DL) to various types of 
solar and space weather data and tasks
Our goal:
1) To improve space weather prediction models
2) To fill in observation blanks
3) To calibrate observational data such as denoising
4) To study whether DL-generated data are feasible for scientific data or not
Recently, we have applied image translation methods based on deep learning to vari-
ous solar and space weather data.

Sun and Space Weather Group in Kyung Hee University



0 Introduction
Why image translation?

Magnetogram EUV

There are various types of multi-filter observations in solar and space weather, and many of them are observed simultaneously.-> It is a good condition for applying the image translation algorithms.

H-alpha Ca K



 1 Generation of Solar Far-side 
Magnetograms
from STEREO/EUVI Images

Kim, Park, Lee et al., 2019Jeong et al., 2020Park et al., 2021



Generation of Solar Farside Magnetograms1
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Generation of Solar Farside Magnetograms1

SDO/AIA 304 Å

STEREO B
EUVI 304 Å

STEREO A
EUVI 304 Å

Solar magnetograms are limited to the frontside solar disk
Solar EUV images are being ob-
served from the front and farside of the Sun

We design a model for the translation from solar EUV images to solar magnetograms
SDO/HMI



1 Generation of Solar Farside Magnetograms

G
DGenerative network Discriminativenetwork
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Sigmoid function

GAN is one of the popular deep learning methods in generation and translation tasks.

Generative Adversarial Network (GAN)



1 Generation of Solar Farside Magnetograms
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distinguishes the real data 
from the fake data.



1 Generation of Solar Farside Magnetograms

G
DGenerative network Discriminativenetwork

Input Fake

Real

( AI-generated )

Convolution layers

Compete

Real
Fake

Sigmoid function

generates real-like fake data 
using input data.

Generative Adversarial Network (GAN)

distinguishes the real data 
from the fake data.

We train the Generator and the Discriminator, this process looks like a competition between the two networks.



Generation of Solar Farside Magnetograms1
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Structure of our model for the translation from solar EUV images to solar magnetograms



Generation of Solar Farside Magnetograms1

Generator

SDO/AIA304 Å image
Generated

magnetogram

Real?

or

Fake?

SDO/HMI
magnetogram

Discriminator
We use SDO/AIA 304 angstrom images 

as input data and SDO/HMI magnetograms 
as target data for the training and testing.

Structure of our model for the translation from solar EUV images to solar magnetograms



Generation of Solar Farside Magnetograms

Generates real-like magnetograms 

from SDO/AIA EUV images

Distinguishes real SDO/HMI magnetograms 

from generated magnetograms

1
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magnetogram

Discriminator

Structure of our model for the translation from solar EUV images to solar magnetograms



Generation of Solar Farside Magnetograms1

The generator generates magnetograms using SDO/AIA images, and then the discriminator tries to distinguish the generated magne-
tograms from real SDO/HMI magnetograms.

Generator

SDO/AIA304 Å image
Generated

magnetogram

Real?

or

Fake?

SDO/HMI
magnetogram

DiscriminatorTraining Step

Structure of our model for the translation from solar EUV images to solar magnetograms



Generation of Solar Farside Magnetograms1

Then the model back-propagates the result to the generator and the discriminator. The generator up-
dates itself to generate more real-like magnetograms to fool the discriminator. The discriminator also updates itself to increase its discrimination accuracy.

Generator

SDO/AIA304 Å image
Generated

magnetogram

Real?

or

Fake?

SDO/HMI
magnetogram

Back-propagation,
Network update

Back-propagation,
Network update

Discriminator

Structure of our model for the translation from solar EUV images to solar magnetograms

Training Step



Generation of Solar Farside Magnetograms1

We use only the generator network. The generator produces magnetograms using SDO/AIA images, and then we compare the generated magnetograms with SDO/HMI magnetograms to estimate the model performances.

Generator

SDO/AIA304 Å image
Generated

magnetogram

SDO/HMI
magnetogram

Comparison bymodel performance score

Structure of our model for the translation from solar EUV images to solar magnetograms

Evaluation Step



Generation of Solar Farside Magnetograms1

Generator

STEREO/EUVI304 Å image
Farside

Magnetogram

Structure of our model for the translation from solar EUV images to solar magnetograms

Generation Step



Generation of Solar Farside Magnetograms

Kim, Park, Lee et al. (2019) suggest a deep learning model for generating solar farside magnetograms from STEREO/EUVI observations. The result shows that we could monitor the temporal evolution of magnetic fields from the solar far side to the solar front side using DL-generated data.

Farside Frontside

1

Time Series Images from farside to frontside A temporal evolution of total unsigned magnetic flux of the NOAA AR 12087 from June 3 to 19 2014



Generation of Solar Farside Magnetograms

However, this study is limited to the maximum magnetic field strength of 100 G and shows low correlations in solar quiet regions.

1

Farside Frontside
Time Series Images from farside to frontside A temporal evolution of total unsigned magnetic flux of the NOAA AR 12087 from June 3 to 19 2014



Generation of Solar Farside Magnetograms

Jeong et al. (2020) upgrade the model with 3,000 Gauss dynamic range to generate more realistic magnetic fluxes, 
and with multi-channel input to improve the generation of quiet regions. 

* AI-generated Solar Farside Magnetogram

1

EUV 304 ÅEUV 195 ÅEUV 171 Å

UpgradedDL Model

More information for the quiet regions

Generate data    with a large      dynamic range

FarsideEUV 304 Å

DL Model

AISFM Ver 2.0AISFM* Ver 1.0



KPL19 Real Jeong20

Generation of Solar Farside Magnetograms1

The model (AISFM Ver 2.0) generates both the active and quiet regions more realistically than the previous model (A-
ISFM Ver 1.0) and shows better results in quantitative comparisons.

AISFM* Ver 1.0 AISFM Ver 2.0



Generation of Solar Farside Magnetograms1

The model generates solar active regions with more realistic magnetic field strengths.

A series of full-disk EUV images and magnetogramsyellow boxes show the tracking of solar active regions over a solar rotation



Coordinate    conversion 

Mapping

Synoptic maps arenot real time data
< 27.3 days ago

Generation of Solar Farside Magnetograms

Conventional magnetic field synoptic maps have been constructed by merg-
ing frontside magnetograms over a 27 day solar rotation period because there is no magnetogram in solar farside.

The conventional synoptic maps are not based on real-time ones.

Conventional Synoptic Map
1



STEREO-B
STEREO-A
SDO

: at a near-real time basis

Generation of Solar Farside Magnetograms
HMI & AI Synchronic Map

We construct AI synchronic global mag-
netic field maps by merging the farside 
magnetograms and SDO/HMI magne-
tograms.

These AI synchronic maps can cover 
mostly real-time global solar photo-
spheric fields.

1



Generation of Solar Farside Magnetograms

Coronal ExtrapolationPhotospheric Fields Observations

Open Field Area Coronal Hole

We extrapolate the global coronal magnetic field from the AI synchronic maps using Potential Field Source Surface (PFSS) model, then compare the results with coronal observations.
Open field lines, which are computed by the PFSS model, arriving at the source surface are associated with coronal holes.

1



Generation of Solar Farside Magnetograms1

⊕𝑬𝒂𝒓𝒕𝒉

⊙𝑆𝑢𝑛

⊕𝑬𝒂𝒓𝒕𝒉

⊙𝑆𝑢𝑛

STEREO-B

STEREO-A
NOAA AR 11236

Coronal Hole

From HMI Synoptic data Observations From HMI & AI Synchronic data
Comparison between farside solar EUV observations and results of PFSS extrapolations

The extrapolation results using AI synchronic data well represent the appearance of the active region and the coronal hole,and the results agree with the observations.



Generation of Solar Farside Magnetograms

We are trying to improve our model by providing solar frontside data to the model as reference information.

AISFM 3.0
AISFM
( Ver. 3.0 )

SDO
Frontside

Magnetogram
Frontside

EUV Observations Reference Information

FasideEUV data
STEREO

1



Generation of Solar Farside Magnetograms
Public release of solar farside magnetograms soon

AISFM

Synchronicglobal map

-A: 2011.01 ~ 2019.12 (~ 47 GB)
-B: 2011.01 ~ 2014.09 (~ 21 GB)

2011.01 ~ 2019.12 (~ 26 GB)

 We are going to release the solar farside magne-
tograms and AI synchronic maps through Korean Data Center (KDC) for SDO in Korean Astronomy and Space Science Institute (KASI).

1

KDC for SDO in KASI



2 De-noising SDO/HMI Magnetograms

Kim, Park, Lee et al., 2019Jeong et al., 2020Park et al., 2020



Denoising SDO/HMI Magnetogram

Liu+ (2012) reported that

“An upper bound to the random noise for the 1” res-
olution HMI 45-second magnetograms is 10.2 G, and 

6.3 G for the 720-second magnetograms.”

2



Denoising SDO/HMI Magnetogram
• Several studies investigated weak solar magnetic field structures such as solar intra-

network and small bi-poles by integrating magnetic field observations to increase the 
signal-to-noise ratio (Wang et al. 1995; Schrijver et al. 1997; Chae et al. 2001).

• Several studies tried to reduce the noise level of solar magnetograms by several types 
of computing algorithms (DeForest 2017; DiasBaso et al. 2019).

• In this study, we apply two deep learning methods to denoising SDO/HMI magne-
tograms.

2



Denoising SDO/HMI Magnetogram
Original HMI(Input) Denoised HMI(Target)

We design a deep learning model that translates from original magnetograms to corresponding de-
noised magnetograms.
-> We need pairs of the original magnetograms and the denoised magnetograms to train the model.

DL Model

2



Denoising SDO/HMI Magnetogram
Crop patches from full disk HMI 45-second magnetogram
patch size: 256 x 256 (± 76.8 arcsec)

2



Denoising SDO/HMI Magnetogram

Target: 21-frame-stacked Mag.

Input: Center frame Mag.

About 15 mins

We integrate 21 magnetogram patches that include 10 frames before and 10 frames after the 
input magnetogram patch considering solar rotation. A stacked magnetogram has approxi-
mately 15 minutes of exposure time. 

2



Denoising SDO/HMI Magnetogram
Original HMI(Input) Stacked HMI(Target)

2

The model1) generates the denoised magnetograms using the original magnetograms.2) calculates the difference between the denoised and the stacked magnetograms, 3) back-propagates the difference, and updates itself to minimize the difference.

We prepare the pairs of the original magnetograms and the stacked magnetograms.The model1) generates the denoised magnetograms using the original magnetograms,2) calculates the difference between the denoised and the stacked magnetograms, 3) back-propagates the difference, and updates itself to minimize the difference.

DL Model



Denoising SDO/HMI Magnetogram
Original HMI(Input) Denoised (M1)(Model output) Stacked HMI(Target)

2

We prepare the pairs of the original magnetograms and the stacked magnetograms.The model1) generates the denoised magnetograms using the original magnetograms,2) calculates the difference between the denoised and the stacked magnetograms, 3) back-propagates the difference, and updates itself to minimize the difference.

DL Model



Denoising SDO/HMI Magnetogram
Original HMI(Input) Denoised (M1)(Model output) Stacked HMI(Target)

2

Loss

We prepare the pairs of the original magnetograms and the stacked magnetograms.The model1) generates the denoised magnetograms using the original magnetograms,2) calculates the difference between the denoised and the stacked magnetograms, 3) back-propagates the difference, and updates itself to minimize the difference.

DL Model



Denoising SDO/HMI Magnetogram
Original HMI(Input) Denoised (M1)(Model output) Stacked HMI(Target)

We prepare the pairs of the original magnetograms and the stacked magnetograms.The model1) generates the denoised magnetograms using the original magnetograms,2) calculates the difference between the denoised and the stacked magnetograms, 3) back-propagates the difference, and updates itself to minimize the difference.

2

Model update

DL Model Loss



Denoising SDO/HMI Magnetogram
Comparisons between the original, stacked, and denoised magnetograms

The denoised magnetograms by our model are consistent with the stacked ones.

2



Denoising SDO/HMI Magnetogram2

The histograms of the denoised magnetograms are similar to those of the stacked ones,and their noise levels are almost same.

Histograms of magnetic flux densities fromthe original, stacked, and denoised magnetograms



Denoising SDO/HMI Magnetogram
• Our model based on image translation method successfully reduce the noise level 

of SDO/HMI magnetograms.
• This method can be applied only when we have pairs of the original magnetograms 

(input) and the denoised magnetograms (target).
• The quality of the model outputs can be affected by the condition of the target data, 

such as the number of frames for the stacked magnetograms.
We designed an additional model (M2) based on AutoEncoder method that can train 
without target magnetograms.

2



Denoising SDO/HMI Magnetogram
• Our model based on image translation method successfully reduce the noise level 

of SDO/HMI magnetograms.
• This method can be applied only when we have pairs of the original magnetograms 

(input) and the denoised magnetograms (target).
• The quality of the model outputs can be affected by the condition of the target data, 

such as the number of frames for the stacked magnetograms.
• We design an additional model (M2) based on AutoEncoder method that can train 

without target magnetograms.

2



Denoising SDO/HMI Magnetogram
Original HMI(Target)

2

DL Model

Stacked HMI(Target)

The dataset is the same as the previous study, but we will not use the stacked magnetograms.

DL Model



Denoising SDO/HMI Magnetogram
Original HMI(Target) Noise-Added(Input)

2

DL ModelAdd Noise

We prepare the original magnetograms and add random Gaussian noise to the magnetograms.
The noise distributions are similar to those of the original ones.

Training Step

DL Model



Denoising SDO/HMI Magnetogram
Original HMI(Target) Noise-Added(Input) Denoised (M2)(Model output)

2

DL ModelAdd Noise

We prepare the original magnetograms and add random Gaussian noise to the magnetograms.
The model
1) generates the denoised magnetograms using the noise-added magnetograms,

Training Step

DL Model



Denoising SDO/HMI Magnetogram
Original HMI(Target) Noise-Added(Input) Denoised (M2)(Model output)

2

DL ModelAdd Noise

We prepare the original magnetograms and add random Gaussian noise to the magnetograms.
The model
1) generates the denoised magnetograms using the noise-added magnetograms,
2) calculates the difference between the denoised and the original magnetograms,

Loss

Training Step

DL Model



Denoising SDO/HMI Magnetogram
Original HMI(Target) Noise-Added(Input) Denoised (M2)(Model output)

2

Model update
DL ModelAdd Noise

We prepare the original magnetograms and add random Gaussian noise to the magnetograms.
The model
1) generates the denoised magnetograms using the noise-added magnetograms,
2) calculates the difference between the denoised and the original magnetograms,
3) back-propagates the difference, and updates itself to minimize the difference.

Loss

Training Step

DL Model



Denoising SDO/HMI Magnetogram
Original HMI(Input) Denoised (M2)(Model output)

2

DL Model

The model generates the denoised magnetograms using the original magnetograms.

Generation Step
DL Model



Denoising SDO/HMI Magnetogram
Comparisons between the original, stacked, and denoised magnetograms
2

The denoised magnetograms by our AutoEncoder model are consistent with the stacked ones



Denoising SDO/HMI Magnetogram2
Histograms of magnetic flux densities fromthe original, stacked, and denoised magnetograms

The histograms of the denoised magnetograms are similar to those of the stacked ones



Denoising SDO/HMI Magnetogram
Comparisons between original, stacked, and denoised magnetograms by two models

M1: Image translation model, M2: AutoEncoder model

2

The denoised magnetograms by two models are consistent with each other.



Denoising SDO/HMI Magnetogram2
Histograms of magnetic flux densities fromthe original, stacked, and denoised magnetograms by two models

The denoised magnetograms by the two models are similar to each other

M1: Image translation model
M2: AutoEncoder model



Denoising SDO/HMI Magnetogram
Application of our models to 21 frames of original SDO/HMI magneotgrams

After the training, we can denoise SDO/
HMI magnetograms without stacking.

2

M1: Image translation model
M2: AutoEncoder model



Denoising SDO/HMI Magnetogram

Original Denoised(M1: Image Translation) Denoised(M2: AutoEncoder)

Application of our model to a full-disk SDO/HMI magnetogram
2



Denoising SDO/HMI Magnetogram
Application of our model to a full-disk SDO/HMI magnetogram: center of disk
2

Original, noise level: 9.1 G Denoised, noise level: 3.4 G(M1: Image Translation) Denoised, noise level: 3.9 G(M2: AutoEncoder)



Denoising SDO/HMI Magnetogram
Application of our model to a full-disk SDO/HMI magnetogram: near the limb
2

Original, noise level: 10.7 G Denoised, noise level: 4.5 G(M1: Image Translation) Denoised, noise level: 4.9 G(M2: AutoEncoder)



Denoising SDO/HMI Magnetogram

• The image-translation method can be applied to denoising solar and 
space weather data if we can build many target noise-reduced data.

• If it is difficult to build the denoised target data, the AutoEncoder 
method can be applied to denoising solar and space weather data as an 
alternative.

2



3 Generation of Modern Satellite Images
from Galileo sunspot drawings in 1612

Kim, Park, Lee et al., 2019Jeong et al., 2020Lee et al., 2021



Generation of Satellite Image from Galileo Sunspot3

We have similar data to this example, that is sunspot drawings.
Isola et al. 2017

Edges to Photo



Generation of Satellite Image from Galileo Sunspot

Title: Generation of Modern Satellite Data from Galileo Sunspot Drawings by Deep Learn-
ing
Author: Harim Lee

3

Galileo Galileisunspot drawing
http://galileo.rice.edu/sci/observations/sunspot_drawings.html

 poster session



THANK YOU


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

