
2nd Machine Learning in Heliophysics Boulder, 21 – 25 March 2022

Monday 21st March

8:30 - 9:30Registration and Coffee9:30 - 10:00Introductory Remarks

Session 1 – Chairs: Tom Berger (in-person), Naoto Nishizuka (virtual)

- 10:00 10:30(Invited) Rafal Angryk (Georgia State University)Making Stuff Up: Ameliorating Data Scarcity in Flare Forecasting through
Synthetic Multivariate Time Series Generation with Deep Learning
- 10:30 11:00 Coffee break
- 11:00 11:20Cedric Huwyler (FHNW, Switzerland)Using Multiple Instance Learning for Explainable Flare Prediction
- 11:20 11:40Kiera van der Sande (University of Colorado)
Comparing Solar Flare Irradiance in GOES X-ray and SDO/AIA EUV Data
via Machine Learning Regression
- 11:40 12:00Jonathan Donzallaz (iCoSys, HES-SO, Switzerland)SolarNet: Solar Flares Prediction with Self-Supervised Learning
- 12:00 12:20 **Dattaraj B Dhuri** (NYU Abu Dhabi) Deep learning reconstruction of sunspot vector magnetic fields for forecasting solar storms
- 12:20 14:00 Lunch

Session 2 – Chairs: Tom Berger (in-person), Enrico Camporeale (in-person)

- 14:00 14:30 (Invited) Eunsu Park (Kyung Hee University, South Korea) Application of image translation methods based on deep learning to solar data
 14:30 – 14:50 Elena G Broock (Instituto Astrofísico de Canarias) Farnet-II: application of Convolutional LSTM and attention mechanisms to solar far-side activity detection
 14:50 – 15:10 Allison Liu (University of Colorado) Data Augmentation of Magnetograms for Solar Flare Prediction using GANs
- 15:10 16:00 Coffee Break

16:00 - 16:30	(Invited) Andres Munoz-Jaramillo (Southwest Research Institute) Using Neural Network Ensembles to Estimate Uncertainty in Heliophysics Applications
16:30 – 16:50	Robert Jarolim (Graz University) Probing the coronal magnetic field with physics informed neural networks
16:50 – 17:10	Oleg Stepanyuk (Bulgarian Academy of Sciences) Advanced Image Preprocessing and Feature Tracking for Remote CME Characterization with Deep Learning
17:10 – 17:30	Benoit Tremblay (University of Colorado) <i>Emulation of MHD simulations to Infer Flows in Granulation, Sunspots, and</i> <i>Active Regions</i>
18:30 – 20:00	Reception Embassy Suites by Hilton, 2601 Canyon Blvd, Boulder

Tuesday 22nd March

8:00 - 9:30	(Hands-on tutorial) Hannah Marlowe (Amazon AWS) Introduction to computer vision object detection for solar flare identification.
9:30 - 10:00	Coffee break
10:00 – 11:30	Wendy Carande (LASP, University of Colorado) <i>Tutorial on ML, part 1</i> <u>https://github.com/wcarande/space_titanic_</u>
11:30 – 12:30	 Data exploration Supervised and unsupervised learning Parameter searches Poster Session A (mostly virtual)
12:30 - 14:00	Lunch
Session 3 – Chairs:	Pete Riley (virtual), Enrico Camporeale (in-person)
14:00 – 14:30	(Invited) Katariina Nykyri (Embry-Riddle Aeronautical University) Information Theory and Machine Learning Applications to Solar Wind Magnetosphere Interactions
14:30 – 14:50	Sahib Julka (University of Passau) An active learning approach for automatic detection of bow shock and magnetopause crossing signatures in Mercury's magnetosphere using MESSENGER magnetometer observations.

14:50 - 15:10	Simon Wing (Johns Hopkins Applied Physics Lab)
	Modeling radiation belt electrons with information theory informed neural networks
15:10 – 15:30	Georgios Balasis (National Observatory of Athens)
	Machine Learning Techniques for Automated ULF Wave Recognition in Swarm
	Time Series
15:30 – 15:50	Michael S. Kirk (ASTRA)
	The Center for HelioAnalytics
15:50 - 18:00	Poster Session A (<i>mostly</i> in-person) – including coffee and refreshments

Wednesday 23rd March

8:30 - 10:30	Enrico Camporeale (University of Colorado) <i>Tutorial on ML, part 2</i>
	https://github.com/ecamporeale/GP_lecture_MLHelio
	Gaussian Process Regression
10:30 - 11:00	Coffee Break
Session 4 – Chairs:	Jacob Bortnik (virtual), Amy Keesee (in-person)
11:00 – 11:20	Ramiz A. Qudsi (Boston University) Algorithm Development for Magnetic Field topology Reconstruction in a 3-D Simulation Box Using Machine Learning
11:20 – 11:40	Brian Swiger (University of Michigan) Energetic Electron Flux Predictions in the near-Earth Plasma Sheet from Solar Driving
11:40 – 12:00	Mikhail Sitnov (Johns Hopkins Applied Physics Lab) Resolving the geomagnetic tail current sheet structure with data mining
12:00 – 12:20	Sigiava Aminalragia-Giamini (SPARC) Radiation belt model including semi-annual variation and Solar driving (SENTINEL)
12:20 – 12:40	Sergio Vidal-Luengo (University of Colorado) Whistler-mode Waves and Relativistic Precipitation Event Detection by Employing Self-Organizing-Maps
12:40 - 14:00	Lunch

Session 5 – Chairs: Simon Wing (in-person), Pete Riley (virtual)

14:00 - 14:30	(invited) Jay Johnson (Andrews University) Information Horizon of Flares and Magnetic Active Regions
14:30 – 14:50	Marius Giger (FHNW, Switzerland) Unsupervised event detection in heliophysics
14:50 – 15:10	Sophie Teichmann (Georg-August-Universität Göttingen) Influence of solar wind parameters on unsupervised solar wind classification
15:10 – 15:30	Talwinder Singh (University of Alabama) Improving the Arrival Time Prediction of Coronal Mass Ejections using Magnetohydrodynamic Ensemble Modeling, Heliospheric Imager data and Machine Learning
15:30 – 16:00	(invited) Gary Doran (JPL) Responsive Onboard Science for Europa Clipper
16:00 – 16:30	Coffee
16:30 – 17:00	(invited) Maria Elena Innocenti (Ruhr University Bochum) A versatile technique for unsupervised classification and preliminary analysis of simulation results
17:00 – 17:20	Hannah Marlowe (Amazon) An unsupervised learning approach to superstorm signature identification in precipitating particle data
17:20 – 17:40	Andong Hu (University of Colorado) Innovative Dst predictions using neural networks
17:40 - 18:00	Kiley Yeakel (Johns Hopkins Applied Physics Lab) Automated algorithm for the detection of dispersionless electron injection events in Earth's magnetotail

Thursday 24th March

Session 6 – Chairs: Michael Kirk (virtual), Amy Keesee (in-person)

8:30 – 9:00	(invited) Maziar Raissi (University of Colorado)
	Data-Efficient Deep Learning using Physics-Informed Neural Networks
9:00 - 9:20	Xiaoyue Li (Zhejiang University)
	Transfer-Solar-GAN: Generation of Input Sources for Solar Wind Models with
	Deep Learning

9:20 - 9:40	Panagiotis Tigas (Oxford University) Global geomagnetic perturbation forecasting using deep learning		
9:40 - 10:00	Mohamed Nedal (Bulgarian Academy of Sciences) Forecasting the Solar Energetic Protons Integral Flux using the Bi-Directional Long Short-Term Memory Neural Network		
10:00 – 10:20	Andrew Smith (University College London) Producing ML-driven Real-Time Forecasts of the Probability of Large Rates of Change of the Surface Magnetic Field in the UK		
10:20 - 11:00	Coffee Break		
11:00 - 11:30	(invited) Alan Kaptanoglu (University of Washington)		
	Machine Learning for discovering sparse models of fluids, plasmas, and much more		
11:30 - 12:30	Poster Session B (<i>mostly</i> virtual)		
12:30 - 14:00	Lunch		
Session 7: - Chairs:	Session 7: - Chairs: Pete Riley (virtual), Delores Knipp (in-person)		
14:00 – 14:20	Sai Gowtam Valluri (University of Alaska) An Artificial Neural Network-based global three-dimensional ionospheric electron density model: present state, challenges, and future directions		
14:20 – 14:40	Vivian Otugo (Rivers State University) Estimation of ionospheric critical plasma frequencies from GNSS-TEC measurements using artificial neural networks		
14:40 – 15:00	Jhassmin A Aricoché (Universidad Nacional del Callao) Modeling ionograms with deep neural networks: Contrasting models		
15:00 – 15:30	Brianna Maze and Alec Engell (NextGen) The Weather Machine Learning Platform and the Space Radiation Intelligence System		
15:30 – 17:30	Poster Session B (<i>mostly</i> in-person) – including coffee and refreshments		
19:30	Social Dinner Champions Center – Rooftop Terrace Club, 2150 Stadium Dr, Boulder, 80302		

Friday 25th March

Session 8 – Chairs: Enrico Camporeale (in-person), Tom Berger (in-person)

8:30 - 9:00	Early career awards
9:00 - 9:30	(invited) Maria J. Molina (NCAR, Boulder, Colorado) <i>Machine Learning for the Geosciences</i>
9:30 – 9:50	Simon Mackovjak (Slovak Academy of Sciences) <i>Towards explanation of airglow variation by ML techniques</i>
9:50 – 10:10	Shanshan Bao (Rice University) A gray-box approach in modeling atmospheric precipitation in global geospace models
10:10 – 10:30	Daniel I Okoh (Centre for Atmospheric Research) Results from a 3-D electron density model developed from COSMIC radio occultation data using artificial neural networks
10:30 - 11:00	Coffee
11:00 – 11:20	Delores J Knipp (University of Colorado) Geophysical interpretations from machine learning superstorm signature identification in satellite precipitating particle data
11:20 - 11:40	Ekaterina Verner (NASA)
	Heliophysics AI/ML focused program, AWS case study and crowdsourcing result
11:40 – 13:00	Open discussion
13:00	Farewell lunch (bag lunch available)

List of posters (v=virtual; p=in person)

Session A (Tuesday 22)

1) Amy Keesee (p)	Methods to improve magnitude accuracy for machine learning predictions of ground magnetic field perturbations	
2) Jasmine R Kobayashi (v)	Machine Learning Models as an Alternative to Standard Interpolation Techniques for Estimating Gaps in OMNI Data	
3) Dattaraj B Dhuri (v)	A deep learning model of proton auroras on Mars	
4) Charles Topliff (p)	A domain transfer approach to forecasting the Solar Wind at L1	
5) Talha Siddique (v)	A Bayesian Ensemble Machine Learning Approach For Prediction of Geomagnetically Induced Currents (GICs) With Uncertainty Quantification	
6) Adam T Michael (v)	Radiation Belt Variability due to Wave-Particle Interactions: A Multiscale Modeling Approach	
7) Spiridon Kasapis (p)	Machine Learning-Based Forecasting of SEP Events Using the Recently Published MDI Data	
8) Pete Riley (v)	What Machine Learning Algorithms Teach us about Which Explanatory Variables Matter Most in Predicting Bz within Coronal Mass Ejections	
9) Rainer Arlt (v)	Machine learning for digitization of historical records of solar activity	
10) Gonzalo A Cucho-Padin	(p) A machine learning framework for the reconstruction of the 3-D ion density distributions and energetic fluxes in the Earth's cusp	
11) Jiahui Shan (v)	Transfer learning for the three-dimensional reconstruction of CMEs	
12) Xiukuan Zhao (v)	Ionospheric scintillation prediction using gradient boosting algorithm	
13) Kimberly D Moreland (p) A machine-learning oriented remote and in-situ database for forecasting SEP occurrence and properties		
14) Anna L Morozova (v)	Comparison of the performance of PCA-NN models for daily mean TEC over the Iberian Peninsula: performance of different neural networks configuration	
15) Daniel T S Wrench (v)	Exploring the potential of neural networks to predict statistics of solar wind turbulence	
16) Raman Mukundan (p)	Optimizing a Neural Network for Regional Forecasting of Ground Magnetic Perturbations Using Spherical Elementary Current Systems	
17) Rukundo Wellen (v)	Forecasting of ionospheric electron content (TEC) using a time series neural network	
18) Xiangning Chu (v)	Relativistic Electron Model in the Outer Radiation Belt Using a Neural Network Approach	
19) Luiz F Guedes dos Santos(p) <i>Exploring the ability of Convolutional Neural Networks to predict Solar wind quantities at 1 AU</i>		
20) Hannah T Rüdisser (v)	Automatic Detection of Interplanetary Coronal Mass Ejections	

21) Luisa Capannolo (v)	Investigating the Relativistic Electron Precipitation using Deep Learning Techniques
22) Alexander Boyd (v)	SHELLS Model: Specifying High-altitude Electrons using Low-altitude LEO Systems
23) Kamen Kozarev (p)	Towards Lucky Imaging for Quiet-Time Low-Frequency Radio Solar Observations
24) Michael K Coughlan (v)	Using a Convolutional Neural Network with Uncertainty to Forecast GIC Risk of Occurrence at Mid-Latitudes.
25) Victor A Pinto (v)	Developing near real-time ground magnetic field perturbations predictions with machine learning models
26) Xudong Sun (v)	<i>SpIn4D: Spectropolarimetric Inversion in Four Dimensions with Deep Learning</i>
27) Kendra Bergstedt (p)	Machine Learning Algorithms for the Detection of Plasmoids in Multiple-X-Line Collisionless Reconnection Regions
28) Rong Lin (v)	Predicting Ambient Solar Wind Speed at L1-point based on Convolutional Neural Network and PFSS Magnetogram
29) Mario Cobos Maestre (v)	Stability of loss functions for solar wind forecasting using Deep Learning
30) Armando Collado-Villave	erde(v) Deep Neural Networks With Convolutional and LSTM Layers for SYM-H and ASY-H Forecasting.
31) Andong Hu (p)	A Multi-Hour-Ahead global geospace model using Gated Recurrent Unit (GRU) networks and SuperMAG data
32) Suvadip Sinha (v)	A comparative study of supervised machine learning algorithms to forecast solar flares
33) Tommaso Alberti (v)	Chaos and spontaneous stochasticity: two sides of (un)predictability
34) Juliana Vievering (p)	Real-Time Solar Flare Predictions using Machine Learning
35) Verena Heidrich-Meisner	(v) Neural network reconstruction of in-situ solar wind parameters
36) Ute V Amerstorfer (v)	Machine Learning Solutions for Data Analysis and Exploitation in Planetary Science - A Work Package in Europlanet 2024 Research Infrastructure
37) Ajay Kumar Tiwari (v)	CME-learn: An interactive playground to benchmark CME databases for the time of arrival (ToA) prediction for using machine learning methods
38) Subhamoy Chatterjee (p)	Forecasting the Occurrence Probability and Properties of Solar Energetic Particle Events using a Multivariate Ensemble of Convolutional Neural Networks
39) Donglai Ma (v)	Machine learning based reconstruction and prediction of radiation belt flux

40) Enrico Camporeale (p)	Space Weather with Quantified Uncertainty: Optimizing Ensembles for Probabilistic Predictions
41) Liam Smith (v)	Machine Learning for Ionospheric Extrapolation and Forecasting in a Data-Model Fusion Approach
42) Kyle Domico (v)	A Machine Learning and Computer Vision Approach to Geomagnetic Storm Forecasting
43) Dominique L Stumbaugh	(p) Predicting Equatorial Electron Flux Measurements from Low Earth Orbit
44) Yong Ji (v)	Composite model for predicting sym-H index
45) Matthew G Lennard (v)	Machine Learning in Heliophysics
46) Simon Bouriat (p)	Forecasting low-energy particle flux in LEO using DMSP satellites: data analysis and first results
47) Emmanuel De Leon (v)	Automatic detection of the electron density from the WHISPER instrument onboard CLUSTER

Session B (Thursday 24)

48) Luiz F Guedes dos Santos (p) Forecasting flux rope's orientation using CNNs		
49) Henrik Eklund (v)	Image refinement and estimation of intensity contrast degradation at small scales events of Solar observations.	
50) Adeline T M Paiement (v) Cloud removal from ground-based images of the Sun		
51) Elizabeth P O'Dwyer (v)	Machine Learning for the Classification of Low Frequency Extensions of Saturn Kilometric Radiation	
52) Carlos J Diaz Baso (p)	Bayesian Stokes inversion with Normalizing flows	
53) Harry Arnold (v)	Using Effective Resistivity Maps Derived From Data Mining for Global MHD Simulations of the Magnetosphere	
54) Ajay Kumar Tiwari (v)	Predicting Arrival Time and Arrival Speed for CMEs: Machine Learning and Ensemble Methods	
55) Laura Simms (v)	A comparison of ARMAX (autoregressive moving average transfer function) and RNN (recurrent neural network) models to predict geostationary keV electrons	
56) Yigit Aytac (p)	A Computer Vision Approach for Real-time Solar Event Detection	
57) Dogacan S Ozturk (v)	A predictive model for the high-latitude ionospheric convection	
58) Aliaa A. M. Afify (v)	Development of a forecasting technique for ionospheric plasma irregularities by applying a supervised machine learning regression technique to spaceborne GPS measurements	
59) Matthew Blandin (v)	Predicting Geomagnetically Induced Currents across Alaska utilizing Multi-Variate LSTM models	

60) Robert Jarolim (p)	ITI for the Sun: Improved intercalibration of multi-instrument heliophysics data series with Instrument-To-Instrument translation	
61) Reynaldo O Rojas Zelay	a (v)Forecasting Spread F at Jicamarca	
62) Laura Simms (v)	The use of differencing to remove spurious correlations in models of geostationary 2 MeV electron flux	
63) Naoto Nishizuka (v)	Reliable Probability Forecast of Solar Flares using Deep Neural Networks	
64) Paul J Wright (p)	SDOVIS: A Vision Transformer Model for Solar Dynamics Observatory (SDO) Data	
65) Constantinos Papadimitr	iou (v) Application of information theoretical measures for improved machine learning modelling of the electron radiation belt	
66) Hemapriya Raju (v)	Deep learning analysis on CMEs assosciated with flares and filaments	
67) Ryan McGranaghan (v)	A Next Generation Space Weather Particle Precipitation Model: Mature machine learning approaches, multiscale mesoscale prediction, and an open science framework for machine learning	
68) Andrea Diercke (p)	Automatic Extraction of Solar Filaments Using Machine Learning Techniques	
69) Sumanth A.T. Rotti (v)	Machine Learning Dataset of SEP Events from Solar Cycles 22, 23 and 24.	
70) Yana Shtyk (v)	Solar flare prediction using a multi-channel model	
71) Pavithra G Srinivas (v)	Development Of An Onboard Space Weather Module For Satellite Operations	
72) Denny Oliveira (p)	Perspectives on the use of data assimilation for improving thermospheric empirical models: Focus on extreme magnetic storms	
73) Grant K Stephens (v)	Global structure of magnetotail reconnection unveiled by mining spaceborne magnetometer data	
74) Vanessa M Mercea (v)	Detection of sunquakes in Egression Power Maps using Deep Autoencoders	
75) Anthony Sciola (v)	Ring current plasma pressure reconstructed from empirical magnetic field distributions embedded within a global MHD model	
76) Ravindra T Desai (p)	Using a neural network to model ultra-relativistic charged particles and exploit sparse datasets	
77) Sachin A Reddy (v)	Predicting Equatorial Plasma Bubbles with Machine Learning and CubeSats	
78) Edward J E Brown (v)	Attention-based machine vision models and techniques for solar wind speed forecasting using solar EUV images	
79) Stefano Bianco (v)	A modification of the PINE model for real-time plasmaspheric forecasts	

80) Thomas Berger (p)	Decreasing False Alarm Rates in ML-based Solar Flare Prediction using SDO/HMI Data	
81) Shah Mohammad Bahau	ddin(v) Unboxing the Black Box: Learning to identify acoustic wave sources on the Sun from Deep Learning	
82) Donglai Ma (v)	Automatic discovery of the equations governing radiation belt dynamics	
83) Saida Milena Diaz Castil	lo (v)Dense segmentation of solar granulation structures using deep learning	
84) Harim Lee (p)	Generation of Modern Satellite Data from Galileo Sunspot Drawings by Deep Learning	
85) James Lende (v)	Statistical Investigation of the Erosion and Refilling of the Plasmasphere - Neural Network Model Approach	
86) John C Dorelli (v)	Vlasov Informed Super Resolution (VISR): A Deep Learning Approach for De-Aliasing Particle Data	
87) Xin Cao (v)	Investigation of the response of equivalent ionospheric current to upstream solar wind and magnetospheric activity: a neural network approach	
88) Subhamoy Chatterjee (p)	Utilizing a Convolutional Neural Network to Efficiently Label a Solar Flux Emergence Video Dataset	
89) Zeyu Sun(v)	Predicting Solar Flares Using CNN and LSTM on Two Solar Cycles of Active Region Data	
90) Linnea Wolniewicz (v)	SEARCH: SEgmentation of Active Regions and Coronal Holes	
91) Enrico Camporeale (p)	The PRAISE Initiative: Promoting Research in Artificial Intelligence for the Space Economy	
92) Kevin D Smith (v)	Machine Learning Classification of Mercury Magnetospheric Boundary Crossings	
93) Daniel E da Silva (p) Data	Semi-Empirical Data Compression for Heliophysics Space Mission	

Sponsors

Time difference calculator

(Note: on this week USA is on Daylight Saving time, while Europe and Australia are still on winter time)

Boulder MDT (UTC -6)	Rome CE T (UTC+1)	New Delhi IST (UTC +5:30)	Tokyo JST (UTC +9)	Sydney AEDT (UTC +11)
8:00 am	3:00 pm	7:30 pm	11:00 pm	1:00 am
12:00 pm	7:00 pm	11:30 pm	3:00 am	5:00 am
3:00 pm	10:00 pm	2:30 am	6:00 am	8:00 am
5:00 pm	12:00 am	4:30 am	8:00 am	10:00 am