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Task
Sequence of AR image/parameters → Strong flares in next 24 hr?

Challenges
• Short time span: SDO was launched in 2010
• Rare events: Positive class takes up 4%

Data Source
• Magnetic field of active regions as they travel across the solar disk.
• Summary parameters of the images
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• RVALUE 𝑅𝑅 = Φstrong field
• AREA 𝑑𝑑 = ∑𝑑𝑑𝑑𝑑

Sample selection & labeling
active region observation 𝑥𝑥 → 𝑃𝑃[𝑦𝑦 = 1|𝑥𝑥]
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Question 1: Does more data help?Introduction Question 2: Does combining model help?
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Stacking
𝑟𝑟𝑖𝑖 = 𝛼𝛼𝑝𝑝𝑖𝑖 + (1 − 𝛼𝛼)𝑞𝑞𝑖𝑖

(0 ≤ 𝛼𝛼 ≤ 1)

Question 3: How does CNN predict?

Visual attribution method: Integrated Gradients [4]
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1. Combining data two solar cycles of data generally improves 
predictions performance.

2. Stacking LSTM and CNN can improve flare prediction in certain 
cases.

3. CNN identifies the preflare features, e.g., emerging polarity 
inversion lines (PILs).

Conclusions

• Evaluation under realistic event rate.
Class priors: 𝜋𝜋𝑘𝑘 on train set, 𝜋𝜋𝑘𝑘′ on the test set.
Suppose the class conditional prob doesn’t change.
Then the posterior can be corrected using Bayes rule [5]:
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• Improve operational utility by including:
• weak flares
• samples that indicates a decay in flare activity

Future work

Stacking ensemble [3]
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The combination weight 𝛼𝛼 should be fitted the on the validation sets.
The criteria to train 𝛼𝛼 can be:
• Nonconvex metrics: ACC, TSS (True Skill Statistics), …
• Convex loss functions: Cross-entropy loss, BSS (Brier Skill Score), …
We also consider baseline models:
• Base learners: CNN, LSTM
• Meta learners: AVG (Averaging), BEST (Best member on the val set)

Outperform *_ONLY 
with 𝒑𝒑 ≤ 𝟎𝟎.𝟎𝟎𝟎𝟎

Outperform BEST 
with 𝒑𝒑 ≤ 𝟎𝟎.𝟎𝟎𝟎𝟎
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