
Introduction
Ionospheric dynamics are governed by the interaction of non-linear 
mechanisms. Equatorial Spread F (ESF) is one of the phenomena that occurs 
in this region and it may have a negative impact on radiowave propagation 
related to satellite communications and radio navigation systems. Thus, it is 
crucial to develop a predictive tool that leverages the vast data captured by 
different radar systems in order to give estimates of when Spread F events  
will occur. Even though some tools exist for this task, most of them are based 
on statistical models that capture the climatological behavior of ESF 
occurrence but may be incapable of capturing day-to-day variability.

Measurements
JULIA (Jicamarca Unattended Long-term Investigations of the Ionosphere and 
Atmosphere) radar observations were used to determine ESF occurrences. 
The geophysical parameters used as inputs consist of Jicamarca’s digisonde 
measurement as well as global parameters. The dataset used spans the years 
from 2000 to 2020.

Data processing
We followed the same ESF characterization process as in Zhan, Rodrigues 
and Milla (2018). Furthermore, since all of the relevant information for our 
supervised learning algorithm lies on the time axis, we collapsed the height 
axis.

Figure 1. ESF occurrence characterization for January 2nd, 2000.

ESF occurrences for each day were stored as a time series and later merged 
with digisonde measurements and global parameters.

Datasets
We split our entire dataset in 3 subsets: Training, Validation and Testing datasets.

Figure 2. The entire dataset, sorted by date and time, was split in 70% training, 20% 
validation and 10% testing.

Neural Network Inputs
Rationale
h’F (1930 LT): “The height of the nighttime F layer is the single most important 
parameter controlling the generation of spread F” (Fejer et al, 1999). We use 
the time 1930 LT for two reasons: The onset time of spread F is usually around 
1920 LT and 1945 LT for equinox and December solstice (Chapagain et al, 
2009) and also because we compare our model with the FIRST.
h’F (prev. 30 min): This is the first value of h’F for which we have available data 
between 1900 LT and 1930 LT. This might indicate how fast the F layer has 
risen in the past 30 minutes.
F10.7: Correlates with onset altitude.
F10.7 (90 days): This is an average value of solar flux index in the last 90 days 
and it provides some information about the solar cycle.
Ap, Ap (24 h): Geomagnetic activity, depending on the local time, season and 
solar cycle, affects the occurrence of irregularities (Hysell and Burcham, 2002).
Day of the year: This is relevant mainly due to of the season-to-season 
variability.

Input pre-processing
All inputs passed to the model must be scaled because it makes a big 
difference when using steepest descent (Hinton et al). Geophysical 
parameters take a range of values that escape a small range such as [0, 1], so 
we applied sklearn.preprocessing.MinMaxScaler to fit the values into 
the desired range. The day of the year however, is a periodic variable and, as 
such, should not be dependent on the choice of origin (Bishop, 2011). 

DNS = sin(2πD/365), DNC = cos(2πD/365), D: Day of year (1-365)

Results
These results correspond to the evaluation and comparison of our model 
and FIRST on the testing dataset. It is important to point out that, in this 
work, FIRST is evaluated with occurrences obtained from the 
characterization presented earlier as opposed to the evaluation in Anderson 
and Redmon (2017), which apparently used occurrences from manually 
labeled ionograms. There were a total of 69 days for which FIRST did not 
make a prediction.

Figure 7. Evaluation of FIRST.

Figure 9. Evaluation of our model.

Figure 10. Confusion matrices for FIRST (left) and our model (right).

Conclusions
The most important geophysical parameters appear to be the day of the 
year and h’F. In addition, our preliminary results suggest that the predictive 
power of our model is slightly better than FIRST but further analysis is 
required to validate this claim.  Previously, we trained a bigger model for 
which we did not conduct hyper-parameter optimization and obtained a 
higher accuracy. We hypothesize that might happen because the average 
accuracy is not the best metric to optimize and we should use a weighted 
average instead. Another hypothesis is that since we are using a different 
year for each fold to evaluate the model during the hyper-parameter 
optimization, the year-to-year variability becomes irrelevant and, as a result, 
the optimization algorithm chooses an oversimplified architecture.

Future work
● Extend the model to make predictions for different times of the night.
● Use GANs to model RTI evolution throughout the night.
● Explore proxies for the growth rate to evaluate if they could also be 

passed as inputs to a predictive model.
● Predict drifts from geophysical parameters such as h’F.
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Figure 8. Color map for the confusion calendars and matrices.
True positive: The model predicted that Spread F would occur, 
and it did.
False positive: The model predicted that Spread F would occur, 
but it did not.
True negative: The model predicted that Spread F would not 
occur, and it did not.
False negative: The model predicted that Spread F would not 
occur, but it did.
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Accuracy: 72% Accuracy: 74%

Model
Architecture
It consists of a Multilayer Perceptron with ELU as activation function. 
It outputs a real number which, when passed to a sigmoid function,  
can be interpreted as the probability of occurrence.

Figure 3. Neural Network Architecture.

In Figure 3, fc X is a fully-connected layer with X units. An activation 
function adds non-linearity to the network allowing it to learn from 
higher-level representations. Dropout p is a layer which, with 
probability p, sets to 0 the output of any unit. 

Optimization
Training
Parameter optimization was carried out with the Adam algorithm for 
30 epochs. The loss function used was 
torch.nn.BCEWithLogitsLoss.

Hyper-parameter configuration search
The model proposed corresponds to the best Optuna trial. This 
library implements the Sequential Model-Based Optimization 
algorithm that uses a Tree-structured Parzen Estimator as surrogate. 
We used a number of folds to partition the dataset by years and 
progressively added years one by one to the training dataset while 
shifting the validation dataset by one year. We aimed to maximize 
the average accuracy across all folds. The years used in this 
optimization process span from 2002 to 2018. As shown in Figure 5, 
we conducted 400 trials.

Figure 4. Hyper-parameter configurations and their corresponding average 
accuracy.

Figure 5. Optimization history.

Input Sensitivity
Figure 6 presents feature importance and the effect that each 
feature on the predictions made by the model for 300 instances 
from the dataset. Features are sorted in descending order 
according their importance.

Figure 6. Shap summary plot.
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