Developing near real-time ground magnetic field perturbations predictions with machine learning models
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Introduction Results Evaluation — Dec 2006 and April 2010 Storms
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between layers 1 and 2. Model was implemented in Tensorflow. * Modelis being deployed for real-time forecast using python Dash. Code will be

available at the MAGICIAN Github repository https://github.com /UNH-GIC-EPSCoR-
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 Atime dependence of 60 minutes was built-in the feature vector

for E, B, Bz, Vx, n and T. MLT and SZA from stations were also ot team/

include as features. Further details can be found in Keesee et al., - E100

(2020). For training, we selected “storm-time only” calculated °F
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storm was performed. Then, data was processed to obtain
maximum values every 20 minutes and evaluation shifts to a
classification problem of hits or misses against 4 different
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