

COMPARISON OF THE PERFORMANCE OF PCA-NN MODELS FOR TEC OVER THE IBERIAN PENINSULA:

PERFORMANCE OF DIFFERENT NEURAL NETWORKS CONFIGURATION

ANNA MOROZOVA,

TERESA BARATA, TATIANA BARLYAEVA

University of Coimbra, Instituto de Astrofísica e Ciências do Espaço, Portugal

OUTLINES

- PCA-NN models for TEC
- Data
 - Correlated SW predictors
- NN

 \bigcirc

- Configuration
- Selection of the best NN architecture & best sets of SW predictors
- Performance & examples
- Conclusions
- Acknowledgements

PCA-NN MODELS FOR TEC

> PCA-BASED MODELS

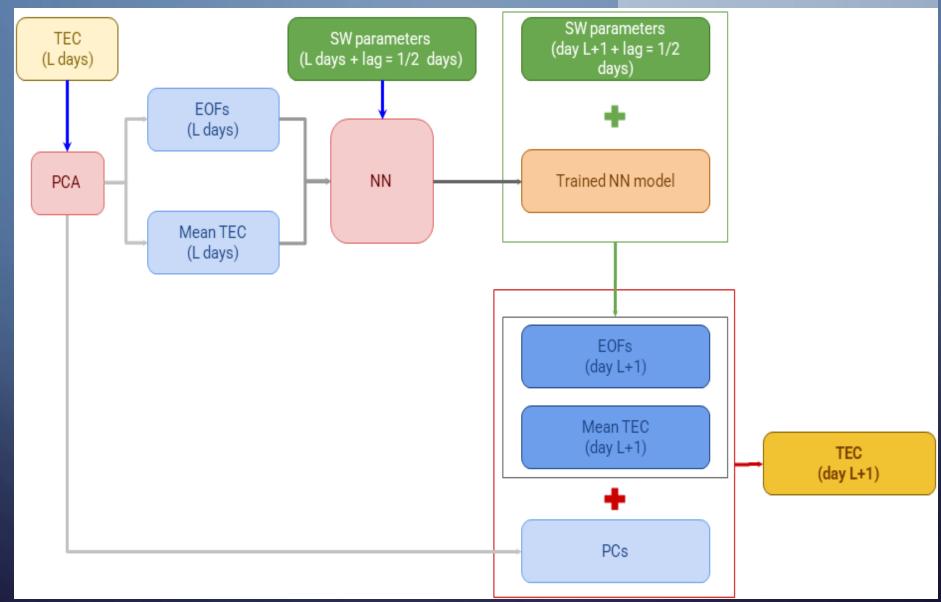
- The total electron content (TEC) over the Iberian Peninsula was modeled using a PCA-NN model based on
 - decomposition of the observed TEC series using the principal component analysis (PCA)
 - 2. reconstruction of the daily mean TEC and daily PCA modes' amplitudes by. For example, regression models (PCA-MRM models^{*}) or neural networks (PCA-NN models) using several types of space weather parameters (SW) as predictors.
- Lags of 1 and 2 days between the TEC and SW predictors are used

* A. L. Morozova, T. Barata, T. Barlyaeva (2022) PCA-MRM model to forecast TEC at middle latitudes, Atmosphere, 13(2), 323; https://doi.org/10.3390/atmos13020323

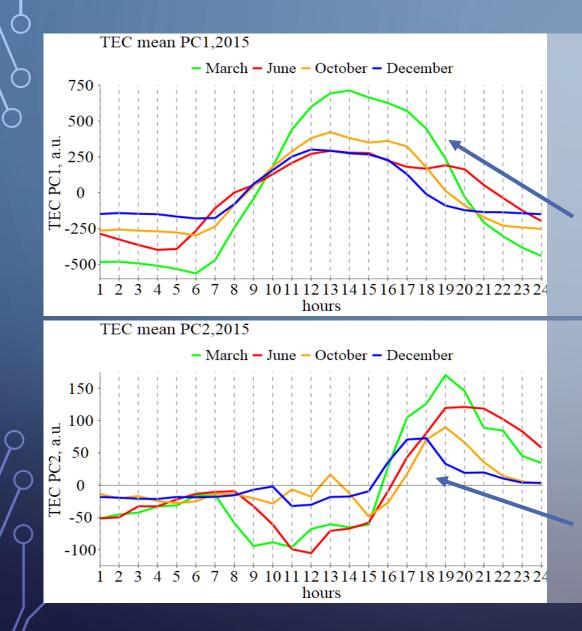
> PCA-NN MODEL

 \bigcap





TEC PCA MODES 1 AND 2



Mode 1 (PC1 & EOF1):
Explains 77-95% of the TEC variations for different months
PC1 = regular daily variation due to the changes of the insolation

Mode 2 (PC2 & EOF2):

Explains 1.5-8.4% of the TEC variations for different months

PC2 = shallow minimum of TEC around the noon and a maximum in the late afternoon

> PCA-BASED MODELS

- The main feature of the PCA-based models is that the TEC series is decomposed into several PCA modes which represent TEC daily variations of different types
- The amplitude of each of the mode for each day is described by the EOF coefficients
 The EOF coefficients can be modelled using space weather parameters as predictors using, e.g., multiple regression models (MRM) or neural networks (NN)
- The advantage of the PCA-based models is that there is no need for any assumption on the phase and amplitude or seasonal/regional features of TEC daily variations: the daily variations of correct shapes are extracted automatically by PCA from the input TEC data

> DATA: TEC

- Vertical TEC measured at Lisbon airport, Portugal (39° N, 9° W) by a GNSS receiver with SCINDA system
- Time interval: 01.01.2015- 31.12.2015
- Time resolution: 1h data

 \bigcirc

DATA: SPACE WEATHER PARAMETERS (SW PREDICTORS)

- Solar wind parameters:
 - Pressure (p), density (n), velocity (v)
- Interplanetary magnetic field:
 - Full interplanetary magnetic field (scalar B), GSM components (Bx, By, Bz)
- Geomagnetic indices:
 - Dst, ap, AE, local K_{col}-index (Coimbra Geomagnetic Observatory, Portugal)
- Proxies for the solar UV & XR fluxes:
 - UV: Mg II composite series or F10.7 index
 - XR: Solar EUV Experiment (TIMED mission)
 - Daily number of solar flares of classes $\leq C$ and M, and the number of all flares N
- Time resolution: 1d data

SPACE WEATHER PARAMETERS: CORRELATED PREDICTORS

- Some of the SW predictors correlate with each other
- Highest correlations:
 - n & p (|r| = 0.75)
 - Dst & ap & AE & Kcoi (|r| = 0.75÷0.85)
 - Mg II & F10.7 & XR ($|r| \ge 0.82$)
 - Number of C and all flares (|r| = 0.98)

SPACE WEATHER PARAMETERS: CORRELATED PREDICTORS ✓

$\backslash d$	r >	В	Bx	Ву	Bz	D	V	•	Dst	0.0	AE	Kcoi	Mgll	F10.7	XR	с	
\backslash	0.6	D	DX	Бу	DZ	n	V	р	051	ap	AE	KCOI	Mgli	F10.7			
$\langle \langle \rangle$	В							0.6		0.66		0.62					5
\mathcal{P}	Bx			0.69													
	Ву		0.69														
	Bz											0.66					
	n							0.75									
	v											0.6					
	р	0.6				0.75				0.64		0.63					
	Dst									0.74	0.75	0.68					
	ap	0.66						0.64	0.74		0.85	0.86					
\sim	AE								0.75	0.85)
$\int d$	Kcoi	0.62			0.66		0.6	0.63	0.68	0.86							Í
	Mgll													0.79	0.82		۶
/ (F10.7												0.79		0.84		
	XR												0.82	0.84			
/	Ν															0.98	

NN MODELS: CONFIGURATION

> PCA-NN MODEL – PREVIOUS RESULTS

- Ready-to-use package is used: neuralnet (R)
- NN algorithm: feedforward NN with the resilient backpropagation with weight backtracking
- The input dataset length L = 31 days
- SW predictors are submitted as lagged series (lag = 1 and 2 days) together (for X predictors there are 2*X input series)
- "Ensemble forecast": a number (e.g., 100) of NN models of the same architecture were trained on the same input dataset and were used to make a forecast for the day L+1; the final forecast is the arithmetic average of 100 forecasts

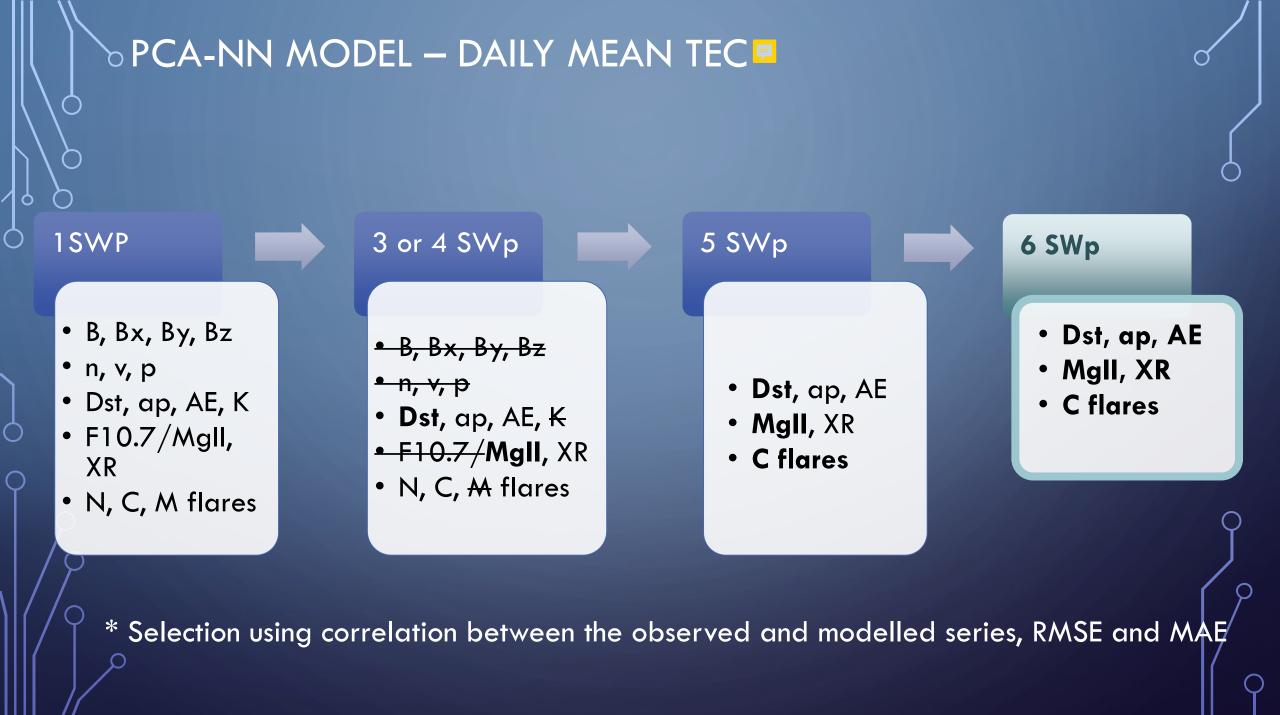
 \bigcirc

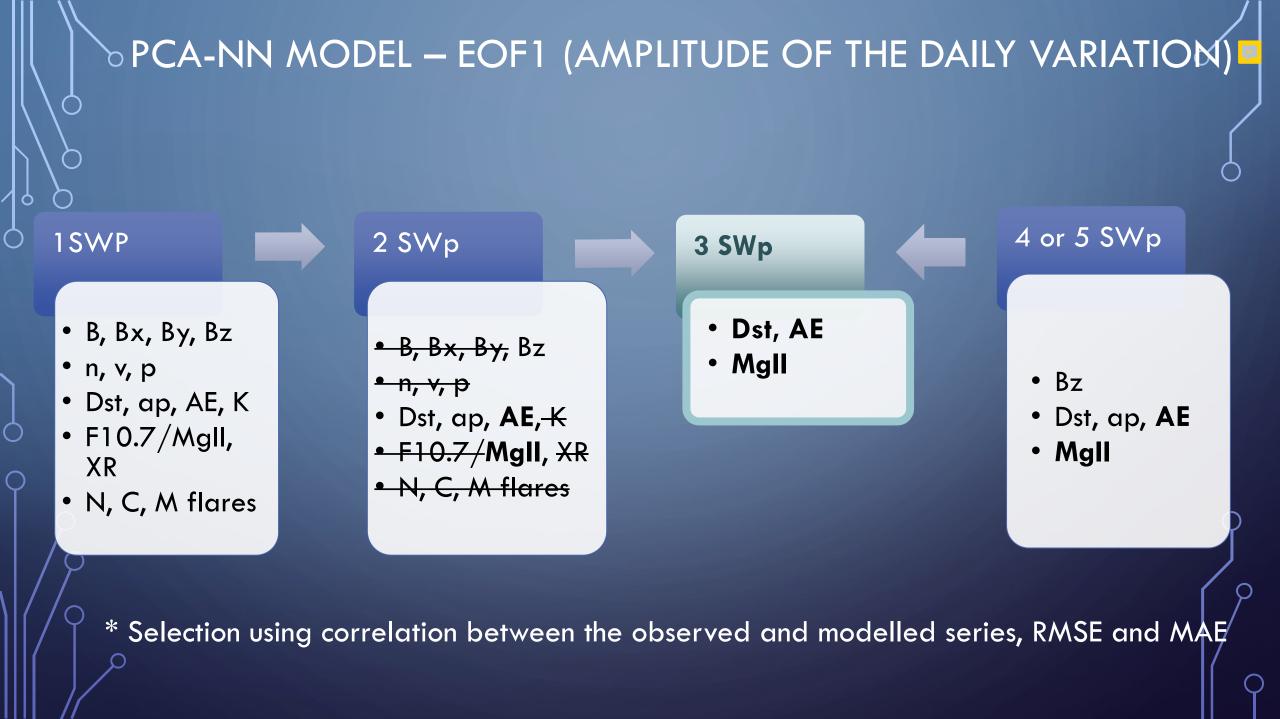
PCA-NN MODEL - CURRENT QUESTIONS

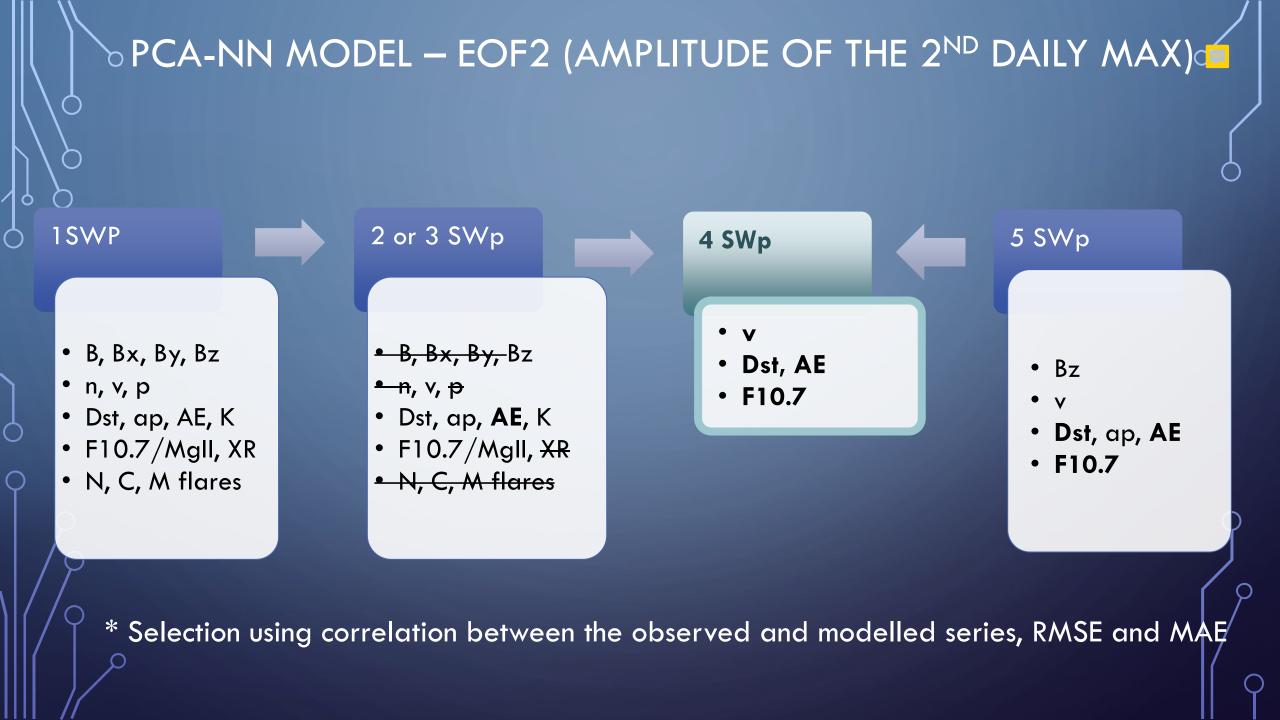
? Best NN configuration(s) that produces forecasts of reasonable quality with minimal number of SW predictors for daily mean TEC and EOFs series

? Best set of SW predictors for daily mean TEC and EOFs series
? Can correlated SW predictors be used

SELECTION OF THE BEST NN ARCHITECTURE & BEST SETS OF SW PREDICTORS







PERFORMANCE OF THE NN MODELS

BEST NN ARCHITECTURE AND BEST SETS OF SW PREDICTORS

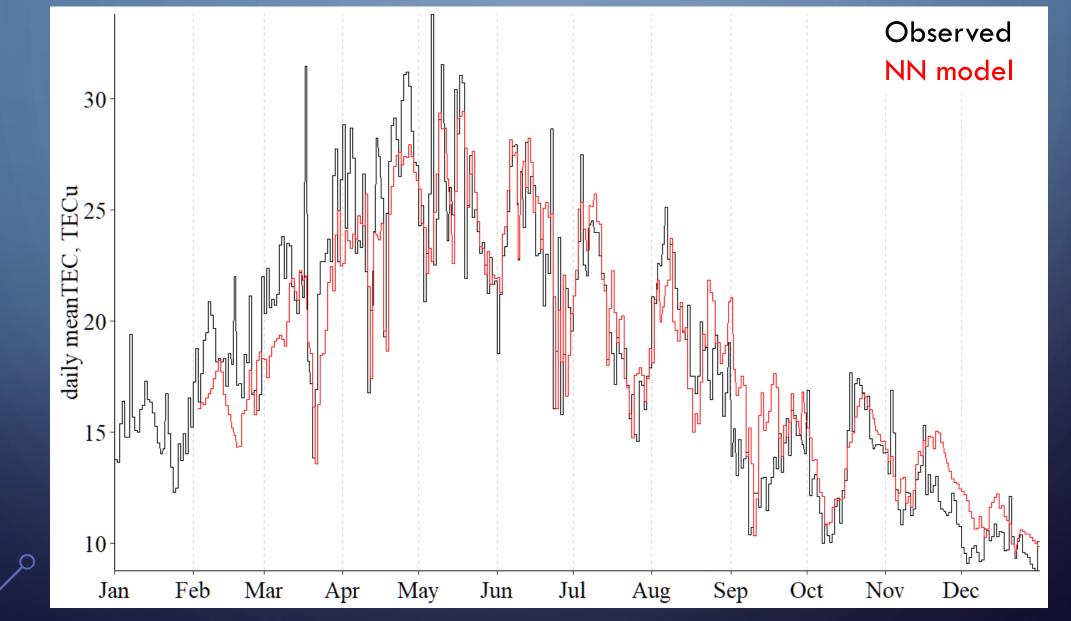
	Daily mean TEC	EOF1	EOF2		
NN (layers & nodes)	(12,6,4)	(6,4)	(8,4,2)		
Predictors	6 predictors	3 predictors	4 predictors		
Best predictors	MgII Dst N. C flares ap AE XR	AE MgII Dst	AE Dst F10.7 (!) V		

COMPARISON OF THE NN FORECASTS AND OBSERVATIONS (SCORES)

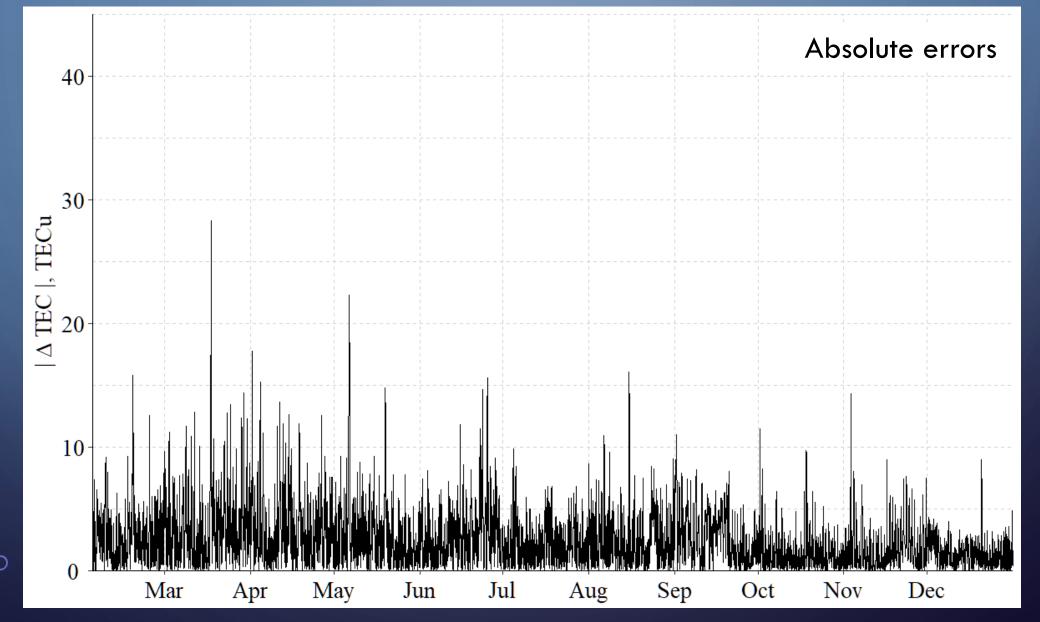
)	1d mean TEC	1h TEC	1h (TEC - TEC _{1d mean})						
r	0.91	0.93	0.94						
MAE, TECu	1.8	2.5	1.7						
RMSE, TECu	2.4	3.4	2.4						
MaxE, TECu	11.1	28.3	18.8						

EXAMPLES OF THE PCA-NN FORECASTS

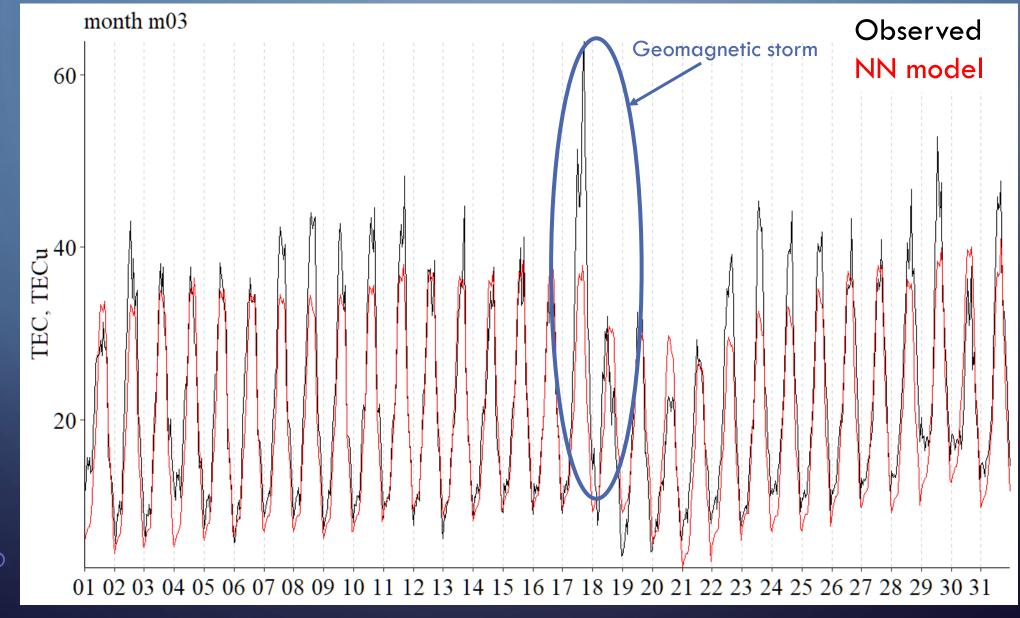
COMPARISON OF PC-NN FORECASTS AND OBSERVATIONS: daily mean TEC



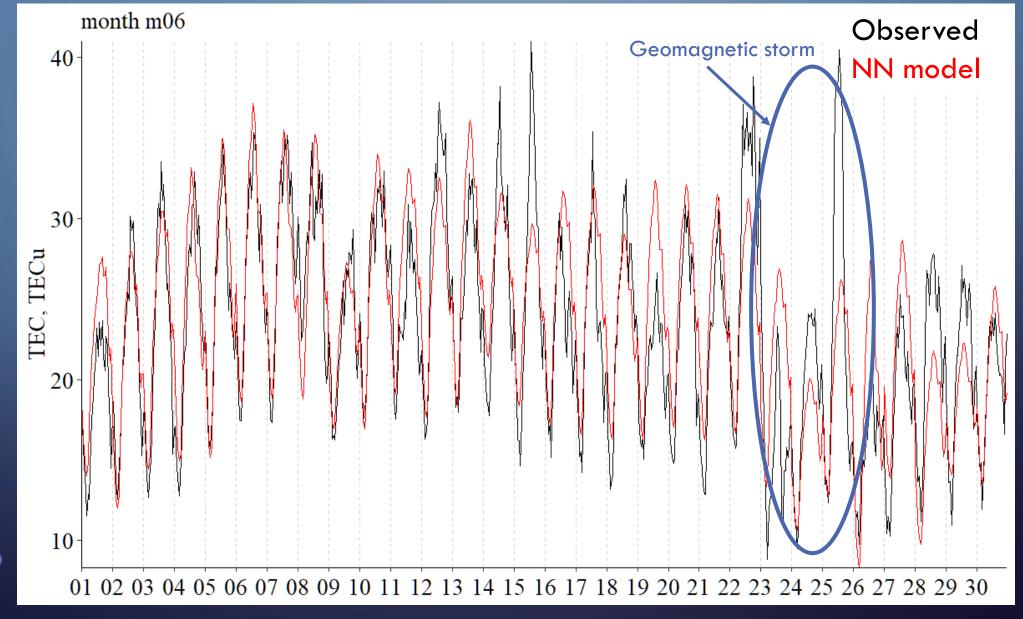
COMPARISON OF PC-NN FORECASTS AND OBSERVATIONS: 1h model's errors



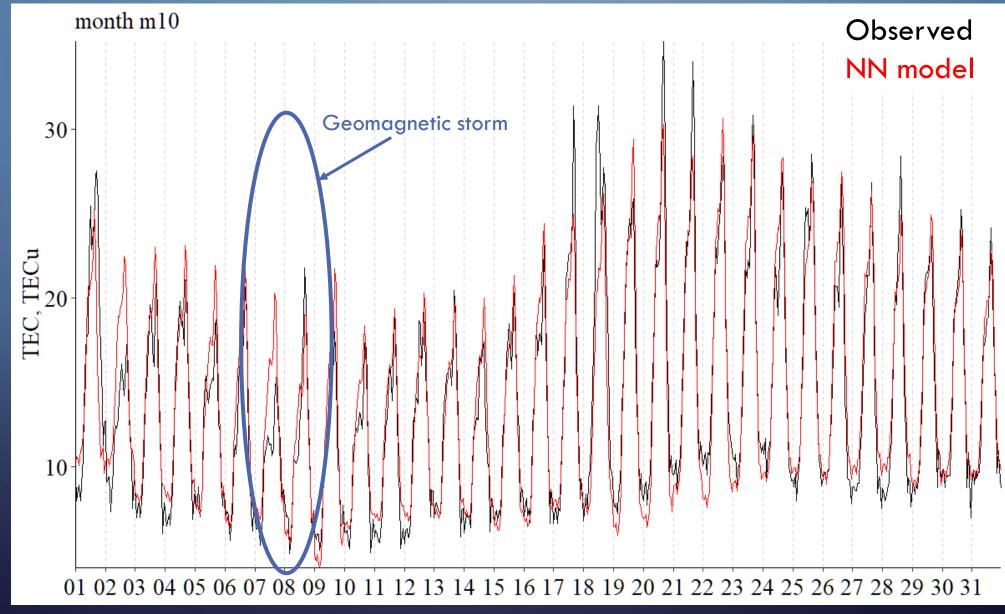
COMPARISON OF PC-NN FORECASTS AND OBSERVATIONS: 1h TEC, March 2015



COMPARISON OF PC-NN FORECASTS AND OBSERVATIONS: 1h TEC, June 2015



COMPARISON OF PC-NN FORECASTS AND OBSERVATIONS: 1h TEC, October 2015



CONCLUSIONS (1)

• Best sets of SW predictors for PCA-NN models:

- Daily mean TEC 6 predictors
- EOF1 3 predictors
- EOF2 4 predictors
- NN with small number of layers perform better (only 2 or 3 layers for 6 to 12 input SW series)

CONCLUSIONS (2)

• Most important predictors:

- Dst, AE, solar UV proxies used for all TEC parameters
- NN model for the daily mean TEC and EOF1 perform better with Mg II as a proxy for the solar UV, but models for EOF2 perform better with F10.7
- The use of correlated predictors may improve the prediction quality:
 - Dst & AE for all TEC series (|r| = 0.75)
 - MgII & XR for the daily mean TEC (|r| = 0.82)
 - ap & AE for the daily mean TEC (|r| = 0.85)

ACKNOWLEDGEMENT

- This research is supported through the projects
 - "SWAIR Space weather impact on GNSS service for Air Navigation", ESA Small ARTES Apps
 - "PRIME: Portuguese Regional Ionosphere Model " (EXPL/CTAMET/0677/2021), FCT
- IA is supported through the projects
 - UIDB/04434/2020 and UIDP/04434/2020, FCT

