Radiation Belt Variability due to Wave-Particle Interactions: A Multiscale Modeling Approach

Combined Mutiscale Modeling "Grey Box" Wave Model Local Acceleration J₀ (No WPI) $Jo - JwPI$ **Charus**

Radius [Re] Radius [Re $J_0 < J_{\rm WD}$

Mesoscale Injections

Understanding the variability of radiation belt intensities has remained a major challenge due, in part, to local acceleration and loss mechanisms often occurring simultaneously with large-scale convection and discrete, mesoscale $(\sim 1 \text{ Re})$ plasma sheet injections.

A. Michael1, K. Sorathia1, A. Ukhorskiy1, X. Shen2, W. Li2, J. Albert3, V. G.Merkin1, I. Cohen1, D. Turner1 1Johns Hopkins Applied Physics Laboratory, 2Boston University , 3Air Force Research Laboratory

Introduction

Microscale Interactions

Global magnetosphere and test particle simulations are capable of capturing evolution through realistic electromagnetic fields, including mesoscale dynamics necessary for radial transport and buildup of the radiation belts; however, until recently, they have lacked microscale energization and scattering processes.

- Local diffusion coefficients in the equator at $L = 4.5$, $n = 20$ cm⁻³, $B_w = 100$ pT for parallel propagating waves with a Gaussian distribution between 0.05 - 0.55 f_{ce}
- v Test particles are evolved through the electromagnetic fields from the MHD solution and the waves from the wave model
- * Use a time-forward stochastic differential equation of the Fokker-Plank formalism (Tao et al. 2008) to determine itch-angle scattering and momentum diffusion from resonant wave-particle interactions

We have incorporated wave-particle interactions into our test particle model to describes all key global-to microscale processes of relativistic electron acceleration and loss

> v Use an analytic expression of the *local* quasi-linear diffusion coefficients, $D_{\alpha\alpha}$, $D_{\alpha p}$, $D_{\rho p}$, derived by Summers (2005)

- Azimuthally averaged intensity as well as the difference in intensities between the runs with and without wave particle interactions, with quantitative comparisons to RBSP-A measurements intensity at selected MeV channels.
- \div Simulated the evolution of the outer radiation belt from 20 UT Mar. 17, 2013 - 6:00 UT on Mar. 18, 2013.
- \triangleleft Wave-particle interactions with lower band chorus waves show increased enhancement of > 1 MeV intensity between $4 < L < 6$.

- \div Simulated the evolution of the outer radiation belt from 16 18:30 UT on Nov. 21, 2016.
- v Captures dusk side loss and retains better latitudinal loss variation.
- \triangle Over 2.5 hours, 9% of the initial radiation belt is lost through the magnetopause

Test-particle simulations of radiation belt dynamics during the March 17, 2013 storm (Sorathia et al.,2018) is shown above. Driven only by the upstream solar wind conditions, CHIMP simulations show a remarkable qualitative agreement with the radiation belt observations from RBSP during all phases of the storm. Larger discrepancies at higher energies are likely attributed to the lack of wave-particle interactions within the model, which we extend to include in this work.

- v We use the test particle model (CHIMP) that evolves particles through accurate, time-varying electromagnetic fields provided by global MHD simulations (GAMERA-RCM). RCM is also used to solve for the plasmaspheric population, producing a dynamic plasmasphere evolving consistently with the global electromagnetic fields.
- v These simulations can accurately capture:
- o Acceleration and trapping within mesoscale flow injections (Ukhorskiy et al., 2018)
- o Depletion and rapid recovery of the outer belt due to injections and magnetopause losses (Sorathia et a. 2018)

$$
\Delta \alpha = a_{\alpha} \Delta t + b_{\alpha \alpha} \sqrt{2 \Delta t} \eta_{\alpha}
$$

$$
\Delta p = a_{p} \Delta t + b_{p \alpha} \sqrt{2 \Delta t} \eta_{\alpha} + b_{pp} \sqrt{2 \Delta t} \eta_{p}
$$

 $\mathbf{\hat{v}}$ Where a_{α} , a_{p} , $b_{\alpha\alpha}$, $b_{p\alpha}$, and b_{pp} are functions of $D_{\alpha\alpha}$, $D_{\alpha p}$, & D_{pp}

Magnetopause Losses

Empirical Wave Model with the plasma throughou

- **V** Grey box framework combines the dynamic magnetic field and plasma conditions from the global geospace model with an empirical wave power model.
- \triangleleft Lower band chorus waves (see Shen et al. (2019):
	- \triangleleft $B_W(L, MLT, \lambda_{MLAT}, SML^*)$
	- \triangle ∆L = 0.2 RE, MLT= 1 hour resolution, $|\lambda_{MLAT}|$ < 20°
	- \triangle We further assume field aligned with a gaussian spectrum
- ◆ Cold plasma density controls chorus wave location, typically generated outside of the plasmasphere.
- \triangle Reparametrized the wave model by $\Delta L_{\rm pp}$ and dynamically evolve the wave locations based on L_{pp} in the simulation

 $\bullet L_{\text{pp}} = 5x$ decrease over 0.5 RE (Malaspina et al. 2016)

Wave Induced Precipitation

Left: 2D histogram of the probability density of electrons that have escaped through the magnetopause. Right: Snapshot of the simulation in the equatorial plane with the pre-event phase space density derived from RBSP and MMS data used to weight the test particles (see Cohen et al. 2021)

 $|D_{\alpha p}|/p^2$ ${\bf D}_{\alpha\alpha}/{\bf p}^2$ D_{pp}/p Energy [keV] α [°] α [°] α [°] D [s-1]

extending over a broader range in MLT