
Detection of sunquakes in Egression Power Maps using Deep Autoencoders
Vanessa M. Mercea 1 Anca M. Marginean 1 Diana Besliu Ionescu 2 Alin R. Paraschiv 3

1Technical University of Cluj-Napoca 2Romanian AcademyAstronomical Institute 3High Altitude Observatory, NCAR

Introduction

Solar flares involve the release of the Sun’s magnetic energy as radiation, particle beams and high-

speed plasma flows. These flares also affect the Sun’s interior, generating seismic waves similar to

earthquakes. Sunquakes have been studied in detail for cause and signatures. Yet, an automatic

ML based tool for detecting these signatures has not been established. We attempt to detect

sunquakes based on their observational signatures in Egression power maps.

Figure 1. Source and Reconstruction of sunquake observations

We use a dataset consisting of timeseries of 35 sunquakes over solar cycle 23, represented as

FITS files, along with numerical observations and metadata used to label the frames.

Challenges and approaches

The main challenges we faced include:

class imbalance: Each sunquake observation file contains a minimum of 8 frames where a sunquake is visible.

The remaining, up to 256, are considered negative samples. We introduced class weights, imbalance specific

loss functions, and down/upsampling.

A low data regime: Working in a low data regime means that we cannot use very deep architectures. We start

from small models, and gradually increase their size and complexity.

The sunspot morphology: The sunspot areas are not consistent between sunquake events. To mitigate this,

we further increase the weight of positive events by oversampling our positive frames using 10 different

transforms.

Machine Learning models

In our solution, we used both supervised and unsupervised Machine Learning methods to construct our model. The

main components include:

A Variational Auto Encoder used to learn representation from the Egression Power maps

A Residual Network as a backbone for the AutoEncoder

A classifier used to perform automated detection over encoded samples. Our experiments include: KNN (with

and without bagging), Feed Forward NN, SVC, Logistic Regression, fine-tuned unfrozen layers of the VAE, SGD.

Figure 2. AutoEncoder architecture
Figure 3. Residual Network Block

By combining the above, we aim to show that an AutoEncoder pretrained on the entire dataset leads to good recon-

structions and may be connected to smaller models for solving downstream tasks, such as automated detection.

Analysis Methodology

We processed the initial data files into a comprehensive dataset. We computed the sunquake margin frames based

on metadata extracted timestamps. We started with an AutoEncoder with a few convolutional layers to extract

information from the quake signatures, which proved insufficient for classification. We then implemented a Residual

Network architecture.

Deep Auto Encoders were chosen because of the complex morphological structure of the data samples, so that the

model would learn the representation and distribution of data samples. AutoEncoders are trained in an unsupervised

manner, so they benefit from being able to learn from the entire dataset, and no information is lost. In this way,

downstream models such as classifiers can use the encoder as a backbone and be trained on downsampled data.

After training and evaluation, we manually validated reconstructions for data samples to confirm that the quake

information is preserved. Due to varying morphological structure between events, we updated our AutoEncoder so

that the Encoder outputs a distribution in the latent space with explicitly modeled variance. We used dimensionality

reduction techniques, specifically PCA and UMAP to interpret clustering of the encoded data points. UMAP showed

good clustering of the latent data. Finally, we fed the encoded latent space preserving the quake signatures and it’s

principal components to various classifiers.

Interpreting UMAP Representations

The figures below represent UMAPs built from the the latent encoding of sunquake samples. The color coding is

viridis, going from purple (frames distant from the sunquake), to yellow (sunquake frames), symmetrically.

Quake clustering as noise

From initial UMAPs generated using 15 neighbors, we hypothesized that sunquake observations are clustered

with noise when no downsampling is used. We can see that after downsampling the frames that are far from the

sunquake’s peak intensity, the cluster count diminishes and the quake observations are groupedwith the remaining

frames. This shows that downsampling the negative samples in the training data could be used to mitigate the

model training effects due to observational and method background noise.

Impact of Morphological Structure

From Fig. 7 we inferred that the observation’s background noise and the morphological structure of the Active

Region play a significant role in the Autoencoder output. Counts in the active region are systematically lower, and

morphologies are not consistent between the sunquake events. These hinder a proper cluster-like classification

of the sunquakes by using just the Variational AutoEncoder.

Figure 4. UMAP plot of all observations of an event

using 250 neighbors. Sample Size: 256
Figure 5. UMAP plot of downsampled observations of

an event using 250 neighbors. Sample Size: 94

Higher Complexity yields to concentric quake clustering

To mitigate the issues presented at the previous point, and improve the hindered clustering, a more complex classi-

ficationmodel is required. We have increased the number of neighbors used to generate the UMAP representation

of the data and shown that higher complexity leads to clustering of the reconstructed sunquake observations. In

Fig. 4 we observe that even without downsampling, the data is now clustered in concentric circles, having the

sunquake observations at the center. A grid search over UMAP parameters shows that without downsampling, a

more complex model is needed, which is confirmed by our classification experiments.

Experiments and Results

For the AutoEncoder training, the hyperparameters below yielded the best learning curve and classification results

so far:

Learning Rate = 1e-5

Batch Size = 16

Number of Residual Blocks = 6

Number of Levels = 4

Number of Latent Dimension filters = 32

Bottleneck Dimension = 256

Multi Residual Block Skips = True

A smaller learning rate worked better when combined

with a smaller batch size. In terms of the AutoEncoder

architecture, we allowed for residual block skips, so

that the feature maps can be added to the latent out-

put at each resolution.
Figure 6. Training loss curve for the AutoEncoder

In terms of classification our experiments show that dimensionality reduction techniques that we used capture

relevant data for classification, both by looking at the UMAP results, and by experimenting with a variety of

classifiers. Results need yet to be improved by further updates to the autoencoder. The input data we used was

varied to include: i. random transforms on negatives and an addition of 5-10 transforms for each positive sample,

ii. downsampling to 40 frames around the sunquake for training.

We achieved best results with combined sampling and sliding windows on current and previous frame encodings

and UMAP components. For a total of two events in the test dataset, the models correctly marked 10 sunquake

frames (out of 13) for the first event event as positive but only 2 frames (out of 13) from the second event.

We experimented with the following models: KNN,

MLP, SGD, SVC, Logistic Regression, unfreezing and

finetuning the top layers of the autoencoder, and also

soft voting between these models. The losses we used

include BCE and focal loss.

FL(pt) = −αt(1 − pt)γlog(pt)
Some of our results can be visualized in the tables be-

low. SVC with a poly kernel showed best results for the

negative class. For most models, there was a trade-off

between precision and recall for positive sunquake sam-

ples. The presented results underline awork in progress.

By analyzing them, we have uncovered specific issues to

address, such as the metrics for the positive class and

the reduced clustering of encodings when fitting UMAP

on the entire dataset.
Figure 7. Confusion Matrix for the Test data (sampled)

Table 1. Classification Report SVC Poly

Class Precision Recall F-score Support

0 0.89 0.98 0.93 171

1 0.62 0.19 0.29 26

accuracy 0.88 197

Train 0 0.75 1.00 0.86 1950

Train 1 0.98 0.32 0.48 930

Train accuracy 0.95 2680

Table 2. Classification Report KNN

Class Precision Recall F-score Support

0 0.88 0.61 0.72 171

1 0.15 0.46 0.23 26

accuracy 0.59 197

Train 0 0.68 1.00 0.81 975

Train 1 1.00 0.73 0.84 1705

Train accuracy 0.83 2680

FutureWork and Conclusions

• The second test event is not correctly recovered. We aim to analyze if observational data is acting in an outlying

way when compared to our sample, and if not, plan to perform cross validation to review the learned features and

predictions over other observations.

• Dimensionality reduction techniques showed promising results, indicated by the fact that the encoded data is

clustered. Moreover, positive results when classifying the encoding show that the relevant aspects in the initial

trained data are indeed captured by the encoder.

• Classification results indicate typical class imbalance and low data regime problems. We believe the current pre-

sented metrics have great potential for improvement.

https://ml-helio.github.io/ ML-HELIO 2022, Boulder, Colorado Mercea.Fl.Vanessa@student.utcluj.ro

https://ml-helio.github.io/
mailto:Mercea.Fl.Vanessa@student.utcluj.ro

