Using Machine Learning Tools To Estimate Photospheric Velocity Fields Prior to the Formation of Active Regions

Matthew Lennard¹, Benoit Tremblay⁴, Andrés Asensio Ramos⁵, Hideyuki Hotta⁶, Haruhisa lijima³, Sung-Hong Park³, Suzana Silva¹, Viktor Fedun¹, Gary Verth²

Plasma Dynamics Group, Department of Automatic Control and Systems Engineering, The University of Sheffield

The University Of Plasma **Dynamics** Sheffield.

Science & Technology

³Institute for Space-Earth Environmental Research, Nagoya University ⁴Laboratory for Atmospheric and Space Physics, University of Colorado Boulder ⁵Instituto de Astrofísica de Canarias

²Plasma Dynamics Group, School of Mathematics and Statistics, The University of Sheffield

⁶Department of Physics, Chiba University

Introduction

Email: mglennard1@sheffield.ac.uk

Active regions are home to highly energetic events on the Sun. They form as a result of magnetic flux evolving under the forces present below the solar surface. When the magnetic flux density is large enough these events can lead further into solar flares and coronal mass ejections, which can have catastrophic consequences here on Earth due to the interaction with our magnetic field. Predicting these events is a key problem in protecting technologies and ourselves. In order to predict these events we need to understand what signs on the surface of the Sun indicate the oncoming of their appearance.

One indicator could be revealed in the topology of flows on the surface. Hence, accurately recovering these flows is key in studying the topology. Machine learning provides an opportunity to reproduce the velocity field from observations by training a neural network (e.g. DeepVel [1]) on data from high resolution simulations. Work done has already showed that, on granular scales on the quiet Sun, there is sufficient evidence to explore DeepVel further as a tool to use alongside existing flow recovery methodologies such as FLCT [4].

Project Aims

Done:

- Retrieve simulation data [2], which includes full velocity vector prior to flux emergence;
- Train DeepVel with single output to recover 3-Dimensional velocity field;
- · Compare predicted outputs with simulation;

Next:

- · Study appearance and change in Lagrangian coherent structures (LCSs) in flows;
- Compare results with other methodologies show in flow diagram;

Conclusions

• DeepVel shows a good performance in • DeepVel is model based. It cannot recover regions. • With access to current data sets DeepVel can be modified for making predictions

from most observational data sets. • The application of DeepVel on active regions shows evidence of success to •DeepVel can suffer from generalisation warrant further testing.

> Fig 2. (Left) (i) Intensitygram from simulatio optical depth τ

> > of a

and recovered

recovering flow topology around active flows for data that is higher resolution than the input-other neural networks exist which may be able to enhance existing data.

- Complex structures and sharp patterns in flows are still hard to detect fully.
- which remains to be tested.

Future Work

•Understand the relationship between Deepvel, training time/samples and prediction success to account for overfitting and optimise overall performance.

• Compare the success of DeepVel with other methodologies, on active regions.

· Compare how different models affect the success of predictions and recovering topology.

• Test DeepVel on observational data, from both low and high resolution images.

• Search for observable features using LCSs from the finite time Lyapunov exponent, which indicate where the appearance of an active region will occur.

			()			close up of a
(a) $t = 20.0 [\text{br}]$	()			(V)	(VII)	complex struct
x [Mm] 20 40 60 80 80 60 40 20	Fig 1. (Left) Plots	tensitygram $(t = 107 \text{ hrs})$	Simulation velocity	6 DeepVel velocity	Difference	simulated veloc
-10	showing evolution	1.4				superimposed
-20 -30	of force-free flux	12	4	4 4	4 4	⁵ divergence fie
-40 -50	tube placed at					및 simulated velo
-60 -70 -70	50 Mm below	1.0		2 5	2	⁴ ឆ្លឺ superimposed
-80 -90 -90				rger 3		vorticity field, (v
-100 -110 -120	surface of	0.8	WIN CONTRACTOR	0 cc WWW	0 CC HW	³ ² recovered velo
-130 -140	different time > 40	ity and the second second	≥ 2			superimposed
-150		0.6		-2 ^w		2 a recovered diverge
$t = 60.0 [hr]^{(b)}$	stamps (a) t=20nr,					(vi) DeepVel r
x [Mm] 20 40 60 80 80 60 40 20	(b) t=60hr, (c) 20-	-0.4		-4	-4	⁻¹ velocity field sup
-10	t=60hr.					on the recovered
-20 -30	0	40 60 80	0 65 66 67 68 69	-6 0 65 66 67 68 69		69 field (vii) absolu
-40	Plots courtesy of (ii)	x (Mm)	(iv) $x (Mm) = -0.5 \text{ km s}^{-1}$	(vi) x (Mm) -0.5 km s ⁻¹	(viii) x (Mm) -0.5 km	s^{-1}
-60 -70 -70	R2D2 simulation	tensitygram (t - 107 hrs)	(iv)	(vi) DeenVol volocity	Difference	between sinuta
-80	run by H Hotta and	1.4		8	- 8	7 recovered velocity
-110 -110 -120	H lijima [2]					absolute errors
-130 -140	4	1.2	4	6 4	6 4	6 simulated and r
-150		the second s		4	4	velocity fields.
t = 180.0 [hr]	3	1.0	3	o of a	Sort 3	of the second se
x [Mm] 20 40 60 80 80 60 40 20	î		a la	⁴ let a	² icity (in	4 2
-10 -10	(M	0.8 2	W		-0 (IC M)	bso
-20 -30	^{>} 2 -	3 A A A A A A A A A A A A A A A A A A A	> 2	-2π	$-2 x \rightarrow 2$	-3 Et
-40 -50		-0.6				I express my g
-60 -70	1			-4		² ⁹ have nothing b
-80 -90		-0.4		-6	-6	helping me pr
-100		-0.2		-8	-8	Lalso thank th
-120	0 65	66 67 68 69	0 65 66 67 68 60	0 65 66 67 68 60	65 66 67 68	60

[1] Ramos, A. & Requerev, Iker & Vitas, N., (2017). DeepVel: Deep learning for the estimation of horizontal velocities at the solar surface. Astronomy & Astrophysics. 604. 101051/0004-6361/201730783

x (Mm

[3] H. E. Potts, R. K. Barrett, D. A. Diver, Balltracking: An highly efficient method for tracking flow fields A&A 424 (1) 253-262 (2004) DOI: 10.1051/0004-6361:20035891

[2] H Hotta, H lijima, On rising magnetic flux tube and formation of sunspots in a deep domain, Monthly Notices of the Royal Astronomical Society, Volume 494, Issue 2, May 2020, Pages 2523-2537. https://doi.org/10.1093/mnras/staa844

[4] Tremblay, B., Roudier, T., Rieutord, M. et al. Reconstruction of Horizontal Plasma Motions at the Photosphere from Intensitygrams: A Comparison Between DeepVel, LCT, FLCT, and CST. Sol Phys 293, 57 (2018). https://doi.org/10.1007/s11207-018-1276-7

-05 km

data at							
= 1 , (ii)	Metric	Velocity	Divergence	Vorticity			
rea with ure, (iii) city field	Pearson Correlation	0.937	0.937	0.755			
on the	Mean Absolute Error	0.991	3.43	4.02			
on the DeepVel	Median Absolute Error	0.830	2.332	2.248			
city field on the	Mean Relative Error	0.494	2.474	6.733			
ence field, ecovered erimposed	Median Relative error	0.305	0.238	0.920			
l vorticity ute error	Cosine Similarity	0.885	-	-			
ited and							
field, (viii)	Table 1. Results for success of DeepVel, after 100 epochs of train						
hotwoon	on 2000 training camples and 500 validation camples on a sin						

of trainin prediction on domain containing active region at optical dept $\tau = 1$

Results

Acknowledgements

s my gratitude to Benoit Tremblay and Suzana Silva, both of whom I othing but respect. I am forever grateful for their time and patience in me progress.

ank the creators of the data and tools used throughout this project.