

Towards Lucky Imaging for Quiet-Time Low-Frequency Radio Solar Observations

Kamen Kozarev¹ (kkozarev@astro.bas.bg), Peijin Zhang¹, Pietro Zucca², Oleg Stepanyuk¹, Mohamed Nedal¹ ¹ Institute of Astronomy, Bulgarian Academy of Sciences ² ASTRON, The Netherlands Institute of Radio Astronomy

Introduction

- Low-frequency interferometric radio imaging observations (20-250 MHz) of the quiet Sun important for understanding corona
- Also important for studying the young solar wind and dim non-burst activity too dim to be observed in spectral data.
- Such observations rarely reported in the literature, because of
 - relative scarcity of observations;
 - difficulty to obtain high quality processed images.
- Daytime ionosphere severely impacts imaging observations and reduces quality, especially when imaging extended corona.
- To mitigate the effects of the ionosphere, exploring machine learning techniques to enable automated snapshot lucky imaging.
- We outline our approach for using ML to select images of sufficient quality, and present initial results.

Methodology - Data

- LOFAR solar data for 4 hours of quiet-time observations on 08/04/2017 were calibrated (baseline visibility phases and amplitudes) using standard LOFAR software DP3;
- Result is a Measurement Set (see tutorial on MS here: <u>https://www.youtube.com/watch?v=lwgleKRqfws</u>)
- 253 baselines and 50k+ samples (~4 hours at 0.25s per sample)
- Extract baseline visibility magnitudes:

Methodology - K-Means Clustering

- Extremely high visibility magnitudes are taken as a sign of corrupted observations (due to bad calibration, ionospheric interference, etc.)
- To remove such baselines, perform K-Means clustering of the visibility amplitudes for each observing interval/sample of duration 0.25 seconds in the solar measurement set.
- The clustering provides self-consistently limiting value of the visibility magnitude.
- We evaluate the K-parameter, reaching a conclusion that 5 is optimal.
- The selection: the maximum visibility magnitude in the second cluster for each interval/sample.

K-Means Clustering - Results

- Clustering reduces significantly the maximum visibility magnitudes (right plot)
- All baseline points below cut-off are flagged to not use.
- This is done sequentially for all intervals (57520 in our observing dataset).
- Finally, interferometric imaging (CLEANing) is performed on the flagged data.

PRELIMINARY RESULTS

- Original images (pre-flagging, left) are compared with the flagged version (right).
- Conclusion: We find a visible improvement of the appearance of the solar signal, especially spatial resolution due to reduced smearing of signal.
- Next steps:
 - Apply technique to snapshot imaging;
 - Apply quality filters also in image domain;
 - Combine images for 'Lucky Imaging' of faint emission.

