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1 Introduction
Geomagnetically induced currents (GICs) is one of the most severe
risks posed by space weather events on ground and LEO infras-
tructures such as high-voltage power transmission systems. GICs
are caused by sudden variations of the Earth’s magnetic field that,
through Faraday’s law, induce an electric field. Hence, much atten-
tion has been dedicated to understanding and forecasting magnetic
field perturbations (

−→
B ). In this study, we are aiming for modeling

−→
B

using SuperMag data and machine learning (ML) approaches.

Figure 1: This figure shows location of the world’s ground based magnetometers
(blue dots). Notice the vast number of stations providing a powerful data set for
global and continuous monitoring of the ground magnetic field.

2 Data and Methods
2.1 SuperMag

Overall,
−→
B measurements from 573 ground magnetometers during

the 23rd solar cycle, i.e., 2000-2009 are downloaded and preprocessed
via https://supermag.jhuapl.edu/mag/. This is because the solar ac-
tivities during 23rd are more significant than those in 24th. The

−→
B

measurements which is GeoB after baseline removal, are used as the
target of this study.

2.2 Omni Data
OmniWeb is one of the databases created by NASA SPDF which can
provided solar wind data measured at L1 point (although some of the
data have been propagated to the bow shock).
According Weimer (2013), several parameters are used for forming in-
dependent variables for this study:

• IMF BT : the magnitude of the tangential IMF in the GSM Y-Z plane.

• θc: clock angle arctan(
IMFBy

IMFBz
) (-90 to 90).

• VSW : solar wind velocity.
• TA: dipole tilt angle expressed in radians, estimated as a function

of DOY and UTC.
• F10.7: The F10.7 index represents ionosphere conductivity variations

due to solar ultraviolet radiation and is expressed as solar flux units

(sfu).

Eventually we form the whole independent variable set (X) by: mag-

netic local time (MLT ); declination (dec);
−−−→
Bt
n,e,z; F10.7; VSW ; TA; IMF

BT ; VSW × sin θc; t× sin θc; IMF BT × sin θc;−−−→
Bt+1
n,e,z is used as the target/response data (Y ). Each X(time−24 : time)

is corresponding to Y (time + forecasthorizon) as one ML sample,
where forecast horizon is how many hours ahead we would like to
predict.

2.3 Storm Periods

Figure 2: Left panel shows the time history of Dst during 1996 to 2010. X axis is date
and Y axis is Dst value. The orange crosses denote peak values smaller than -100
nT, used for defining storm events considered in this study. Right panel is an exam-
ple of the selection criterion to define the time range for one storm event. The Dst
peak occurs on Oct. 23, 1996. The nearest positive Dst values before and after the
peak occur on Oct. 18 and Nov. 03, respectively. The whole storm range is defined
between Oct. 17, 1996 and Nov. 04, 1996 with a 24-hour buffer zone.

A storm period usually includes a pre-storm period, a main phase
and a recovery phase. Define a storm period is always a difficult task.
In this study, we look for the the nearest positive Dst values before
and after each peak, and then extend the time window by a 24-hour
buffer. An example is shown in the right panel of Fig. 2. With this
procedure we make sure that the time intervals are selected in such
a way that the negative Dst peaks do not always occur at the same
time within the chosen storm-time window, hence the neural network
does not memorize. All ML samples during one storm are considered
as one event. Overall, the whole ML-ready data set includes 51 events
for each given station as shown in the left panel of Fig. 2.

2.4 Method
Gated Recurrent Unit (GRU) Recurrent Neural Networks is used to
give a preliminary prediction of from the ML-ready data set. The un-
certainty of the model, so-called ∆

−→
B model is then developed by the

ACCURE method (Camporeale et al. (2021)). Then a linear estimator
is then implemented for assimilating the ∆

−→
B model into

−→
B model.

2.4.1 Gated Recurrent Unit (GRU) Recurrent Neural Networks

Gated Recurrent Unit (GRU) networks is one of the most widely used
Recurrent Neural Networks (RNNs) which inherits the advantages of
RNN. Similar to Long short-term memory (LSTM), GRU was created

as the solution to short-term memory. In most scenarios, the perfor-
mance of GRU is on par with LSTM, but computationally more effi-
cient because of a less complex structure. The architecture of GRU is
shown in Fig. 4. The X is a time series with a 6-hr span. Y is the
corresponding Dst with a fixed time forecast horizon, i.e., 1-6 hours.
The model trained for 1h ahead can be used for the 2h ahead. Fig. 3
exhibits the

−→
Be RMSE over more than 150 stations. This implies that

the developed model performs good in low an d mid latitudes, but
not high latitudes.

Figure 3: Global
−→
Be RMSE of the developed GRU model from more than 150 Super-

MAG stations.

Figure 4: Structure of GRU. xt is the independent variable set at the tth epoch, and
Y is the target. ht is the temporary results from the tth GRU unit, h0 is manually
initialized. The connection between h and Y are normal softmax/regression. Each
GRU unit can be considered as a vanilla MLP model. zt is update gate vector and rt
is reset gate vector. W s, Us and bs are the coefficients that needed to be estimated
during training. In addition, σg and Φh is sigmoid and tanh activation respectively.

2.4.2 Linear Estimator

Linear estimator is a simplified KF method. The equation is:

x̂i =
∆Per2

∆
−→
B 2

i +∆Per2
× xGRU

i +
∆Per2

∆
−→
B 2

i +∆Per2
× xPer

i (1)

A general Kalman-filter is also used for comparison.
Generally, the whole procedures can be described into two steps:

• train
−→
B and ∆

−→
B models for each forecast horizon (1-6 hrs ahead),

as shown in the right panel of Fig. 4;

• assimilate
−→
B predictions from

−→
B model with N − 1 hrs ahead into

−→
B predictions from

−→
B model with N hrs ahead to further improve

the accuracy, as shown in Fig. 5.

Figure 5: flowchart of data assimilation. E.g., for a given sample, we assimilate
−→
B

model with N − 1 hrs ahead into
−→
B predictions from

−→
B model with N hrs ahead

to further improve the accuracy. When N=1, the
−→
B from the persistence model is

assimilated for instead.

3 Results
An example of the final predictions of Bx for a given station in mid-
latitudes during the 2003-Halloween storm are shown in Fig. 6. For
each panel, yellow line is the GRU predictions; red line denotes real
measurements; white line denotes the persistence model. It should be
noted that the persistence model within forecast horizon:Nh denotes
the model of forecast horizon:N − 1h, except when N = 1. Green
line denotes the final results from DA. Blue and grey bars are the un-
certainty (1 std) of GRU and persistence predictions respectively. It
is clear that the DA results outperform GRU prediction significantly
during the main phase of the storm.

Figure 6: Final Bx predictions from a given station during the 2003 Halloween
storm. It should be noted that the persistence model within forecast horizon:Nh
denotes the model of forecast horizon:N − 1h, except when N = 1.

4 Summary and future
In summary, we wish to highlight the following:
◦ The GRU and ACCRUE method can well predict

−→
B and the uncer-

tainty of
−→
B ;

◦ The
−→
B prediction can be significantly improved by assimilating the

persistence model into the predictions.
◦ A boost method will be implemented into this application in order
to improve the performance of the model during main phase of strong
storm periods
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