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Abstract
The properties of the solar wind change with different solar source regions and in addition
most solar wind properties are affected by transport effects. Relevant transport effects are
expansion, collisions, stream interaction regions and wave particle interaction. On the one
hand, the charge state composition of the solar wind is particularly well suited to identify
the solar source region, since in good approximation the charge state composition remains
unchanged after the solar wind leaves the hot corona. On the other hand, proton plasma
properties and the magnetic field strength are better suited to identify solar wind plasma
that is affected by transport effects, for instance stream interaction regions. Nevertheless,
proton plasma properties also change with the solar source region. Here, we evaluate this
redundancy with the help of neural networks. Either the solar wind proton speed, proton
density, proton temperature, magnetic field strength or the O7+/O6+ ratio are recon-
structed by a feed-forward neural network, while the (other) proton plasma properties are
used as input parameters. The results show that it is easier to reconstruct the proton speed
or proton temperature from the other transport-affected proton plasma properties than pre-
dicting the purely source-dependent O7+/O6+ ratio, the magnetic field strength or the
proton density from the respective other solar wind properties. Nevertheless, the neural
network prediction also succeeded to recover the O7+/O6+ from solar wind parameters
that are all transport-affected, however less accurate than in the case of the proton speed
or proton temperature.

Motivation
▶ Can the redundancy in the solar wind data be exploited to circumvent difficult measure-

ments?

▶ Can the solar source of the solar wind be recovered from only transport effected param-
eters?

Data selection
We apply our method to ten years of observations from the Advanced Composition Explorer
(ACE). The solar wind proton plasma parameters are taken from the Solar Wind Electron,
Proton, and Alpha Monitor (ACE/SWEPAM) ([6]) and magnetic field observations from
the magnetometer ACE/MAG ([8]).
The ionic composition is derived from the Solar Wind Ion Composition spectrometer
(SWICS, [2] Pulse Height Analysis (PHA) words as described in [1]. We use the na-
tive 12-minute time resolution of ACE/SWICS which results in at most 43800 data points
in non-leap years and 43920 in leap years.
To characterize the solar wind type, we employ the four-type solar wind categorization
scheme from [9]. To exclude interplanetary coronal mass ejections (ICMEs) we use two
ICME lists, the [4, 3] list and the [7] list, instead of the ejecta category.

Experimental setup
We consider five solar wind parameters, proton
density np, proton temperature Tp, proton speed
vp, magnetic field strength B, and O7+ to O6+

charge state ratio nO7+/nO6+, take four of them
as input to a feed forward neural network (NN)
with one hidden layer and a bias neuron and aim
to reconstruct the fifth parameter as the output
of the NN. The data set is divided into train-
ing, validation and test data sets, wherein each
batch of data has the length of 27.24 days to
increase the probability that a comparable sam-
ple of solar wind conditions is represented in test
and training data, i.e. to ensure the assumption
that both data sets are independently identically
distributed). For the model selection, the train-
ing and validation data sets are used in a 5-fold
cross-validation.

We used the MLPRegressor from the python scikit-learn package. As training algorithm
adam [5] was employed. With sufficient numbers of iterations (≥ 200), we found only non-
significant dependence on the number of neurons in the hidden layer. This indicates, that
the modelled relation between the respective solar wind parameters are not complicated.
Therefore, in the following, we show only results for 10 neurons.
For model selection, the R2 score was used, for comparison on different data sets and
between different reconstructions, the mean absolute percentage error (MAPE) was
employed.

setup # trials 100
# iterations 200
# neurons 10 ∈ [10, 20, 50, 100]

hyper-parameters initial learning rate λ [0.01, 0.001, 0.0001]
L2 penalty α [0.001, 0.0001, 0.00001]
Exponential decay rate for
estimates of first moment
vector β1

[0.75, 0.8, , 0.85, 0.9, 0.95, 0.99]

Exponential decay rate for
estimates of second moment
vector β2

[0.8, 0.85, 0.9, 0.95, 0.99, 0.999]

Value for numerical stability
ϵ

[10−6, 10−7, 10−8, 10−9, 10−10]

Reconstruction vp Input [np, Tp, B, nO7+/nO6+]
Reconstruction np Input [Tp, vp, B, nO7+/nO6+]
Reconstruction Tp Input [np, vp, B, nO7+/nO6+]
Reconstruction B Input

[np, Tp, vp, nO7+/nO6+]
Reconstruction nO7+/nO6+ Input [np, Tp, vp, B]

Model selection

Learning curves for all
hyper-parameter com-
binations used for the
reconstruction of the
solar wind speed.

▶ The optimal NN hyper-parameters depend on the reconstructed solar wind parameter.

▶Many hyper-parameter settings lead similar reconstructions.

Learning curves for
validation and test
data sets for all five
reconstruction cases

▶ Reconstruction easiest for vp. B, nO7+/nO6+, T, and np all show similar MAPE.

Neural network reconstructions
Histogram of reconstruction error (differences between observed data and NN reconstruc-
tions) for all five cases

▶ Reconstruction error depends on solar wind type. Smallest errors occur for coronal hole
wind (and streamer belt plasma), largest errors for sector reversal plasma (i.e. stream
interaction regions).

▶ nO7+/nO6+ underestimated, B, np, Tp, vp overestimated.

▶ In coronal hole wind, the distribution of reconstruction errors is more symmetric.

Solar cycle dependence?
Comparison of NN reconstructed solar wind parameters with observations (on test data
only, without ICMEs)

▶ Reconstructions tends to miss extreme values, best for most frequent intermediate val-
ues.

▶ systematic lower threshold on B

▶ Scores on individual test data sets (of length 27.25 days) are variable.

Scores on test data sets over time and for all five reconstruction cases

▶ Effect of solar cycle is not much larger compared to differences between individual test
data periods.

▶ Nevertheless: for vp and Tp reconstruction is easier during solar activity minimum, for
np and B no trend is visible, for nO7+/nO6+ reconstruction is easier during solar activity
maximum (higher fluxes)

Conclusions
▶ vp, Tp, B, np, and nO7+/nO6+ can be reconstructed from the respective other solar wind

parameters. The reconstruction is best for vp, i.e. this parameter is most redundant.
But also for Tp as the most difficult proton parameter to determine instrumentally, a
neural network reconstruction can provide a useful alternative/baseline.

▶ nO7+/nO6+ can be reconstructed with similar accuracy than B, Tp and np. This sup-
ports the idea that the solar source region can be identified based on transport-effected
solar wind parameters, but the identification can be expected to be less accurate.

▶ The relative error (MAPE) depends on the solar wind type and is usually best for coronal
hole wind and worst for sector reversal plasma. In addition, in slow solar wind nO7+/nO6+

is more frequently underestimated, wheres as B, np, Tp, vp are more frequently overes-
timated.

▶ Reconstruction quality differs for individual test intervals. Proton speed and proton tem-
perature are easier to reconstruct under more stable conditions, whereas the O charge
state ratio shows the opposite behavior.

For questions or comments please email me
heidrich@physik.uni-kiel.de, or join me for video chat
at https://blau.psjt.org/b/ver-mxr-jvy-jaa.
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