
Bayesian Stokes inversion with Normalizing flows
*C. J. Díaz Baso1, A. Asensio Ramos2,3, J. de la Cruz Rodríguez1

1 Institute for Solar Physics, Dept. of Astronomy, Stockholm University, AlbaNova University Centre, SE-10691 Stockholm, Sweden
2 Instituto de Astrofísica de Canarias, C/Vía Láctea s/n, E-38205 La Laguna, Tenerife, Spain

3 Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain
 *Email : carlos.diaz@astro.su.se

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 
research and innovation programme (grant agreement 759548)

Fig. 6: Simplified illustration of the magnetic topology 
consistent with our results.

In spectropolarimetry, the process of finding the solar parameters that give rise to the observed 
spectrum is known as inversion. This method is very slow when applied on many pixels or involves 
spectral lines with complex formation. Recently, standard artificial neural networks (ANNs) have 
been shown to be much faster in learning the average mapping between spectra and physical 
quantities, but they do not perform properly if there are degeneracies or several solutions, and they 
do not provide uncertainty estimates. On the other hand, Bayesian inference allows us to obtain 
the full probability distribution including uncertainties, correlations and whether our distribution is 
(or not) multimodal, but sampling methods are very computationally expensive. In the following, we 
introduce a new technique that allows us to perform fast Bayesian inference.

As a first example, we illustrate here the capabilities of the method in a simple Milne-Eddington 
model where the forward model is analytic and fast enough to allow a comparison with the exact 
solution obtained with a Markov Chain Monte Carlo (MCMC) method. This model uses five 
parameters for controlling the intensity profile of the spectral line.

We created a database of 106 pairs of examples (parameters vs spectra) and we optimized the 
transformations of the normalizing flow, as in classical neural networks, but in this case to 
reproduce the distribution of the data. Once trained, the NFlow can produce the distributions for 
any given observation as accurate as the MCMC sampling method, with the corresponding 
uncertainties and degeneracies like the ones between the absorption of the line, the source function 
and the Doppler width with a banana shape.

We have explored the performance of normalizing flows to accurately infer the posterior distribution 
of the solar model atmosphere (parameters, correlations, and uncertainties) from the interpretation 
of observed spectra. Given the generality of the technique, it can be applied to any inference 
process or physical quantity.

A natural extension of this work would be to include the four Stokes parameters to infer the 
magnetic properties of our target of interest, while also setting more constraints in the rest of the 
physical parameters. From a practical point of view, this method requires nothing more than the 
same pairs of examples that are used for training any other network.

Fig. 3: Atmospheric stratification from observed intensity profiles. The colored bands indicate 
the standard deviation of each distribution.

The real improvement occurs when the new method is applied to non-LTE inversions, which are 
more computationally demanding. Following the same procedure, we created a large dataset with 
synthetic profiles of a photospheric FeI line at 6301Å and the chromospheric CaII line at 8542Å. To 
illustrate the performance of this technique with different spectral lines, we have trained two 
normalizing flows: one only using the photospheric FeI line which gives the orange solution 
and another which also uses the chromospheric CaII line and produces the brown solution. 

Figure 3 shows an example of the inference of temperature, velocity and microturbulent velocity for a 
given observation. From the width of the solutions (here the bands representing 1 sigma of the 
distribution), we see that just by looking at the database, the normalizing flow learns the sensitivity 
range of each spectral line. This inference takes around 1 second (producing 104 samples) while an 
MCMC would take many hours or even days.

Fig. 2: Joint and marginal posterior distributions for the physical parameters 
involved in the Milne-Eddington model.

The novel technique that allows us to perform fast Bayesian inference combines Bayesian inference 
and neural networks, and is known as normalizing flows (NFlows). They are a set of invertible and 
parameterized transformations that approximate the probability distribution of our target by a 
transformation from a simple probability distribution (usually a Gaussian). If these transformations 
are conditioned on observations (see lower panel of Fig. 1), we can train normalizing flows to return 
Bayesian posterior probabilities for any observation. For comparison, there is a sketch of a standard 
artificial neural network in upper panel of Fig. 1 which outputs the average mapping.

Fig. 1: Comparison between an artificial neural network and a conditional normalizing flow.

More info here: Díaz Baso et al., 2022 (A&A) (https://arxiv.org/abs/2108.07089)
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Figure 4 shows in the left and right panels the mean stratification and standard deviation. The lower 
half of each panel shows the temperature at the photosphere, and the upper half provides a view of 
the chromosphere. The uncertainties tend to increase from the photosphere to the chromosphere. 
The magnitude and uncertainty are correlated since our spectral lines are less sensitive to higher 
chromospheric temperatures.

Finally, we have also tested the normalizing flows on a large field of view on some real 
observations carried out at the Swedish 1-m Solar Telescope on 2016-09-19 at 09:30UT. We have 
applied the neural network to a field of view of approximately 42×42 arcseconds (around 5·105 
pixels). Spectra from individual pixels are analyzed independently. The normalizing flow was able 
to produce the posterior distribution in a few tens of minutes, whereas a standard inversion 
technique would have required several days only for a single point estimate. Fig. 4: Temperature and uncertainties of the FOV as inferred with the normalizing flow.
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