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The Challenge of Dataset Imbalance in ML-based
Solar Flare Prediction

- A primary challenge to ML-based solar flare prediction is high dataset
imbalance.

- For a SDO/HMI™l magnetogram dataset labeled flaring/non-flaring in the next
24 hours, approximately 99% of the samples are non-flaring.

- Evaluating these models is traditionally performed using metrics insensitive to
dataset imbalance, such as the True Skill Statistic (TSS).

- However, deep learning models tuned for optimizing the TSS score on such
imbalanced datasets tend to be overforecasting (i.e. produce false positives) and
affects metrics like precision and HSS,.

- To address overforecasting, we propose a two-stage novel architecture that
combines VGG-16 --- a CNN-based deep learning model --- with an extremely

randomized trees (ERT) model and tune it using a novel metric: TSS._,/..-

Exploring VGG-16 Variants for Solar Flare Prediction
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T BN Convolution + RELU
Input: temporal stack of magnetograms oy Lexpodins
Configuration ROC AUC | PR AUC
Clt [Br, B¢, Bg] 0.967 0.43
Cy: B, 0.965 0.43
Cs: B, stack w/LSTM 0.975 0.43
Cy: B, stack as channels 0.974 0.46

The first stage of our model is a VGG-16: a standard CNN-based architecture!4/.
After experimenting with different input formats and architectural variants, we
show that a VGG-16 trained on temporal stacks of B, works best.

A Hybrid Two-stage Model:
Combining CNN-extracted and Engineered Features
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Output flaring
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We designh a two-stage model as follows:

1. Stage 1 is the modified VGG-16 architecture trained on temporal stacks of
magnetogram images, which outputs a flaring probability: cnn_prob.

2. Stage 2 is an ERT model trained on three kinds of features: SHARPs!3]
topologicall?l and cnn_prob. This outputs a binary prediction for each observation.

A Novel Metric for Hyperparameter Tuning

For tuning each of the two stages, the TSS

. . TSS = TPR—FPR € [-1,1]
metric causes overforecastlng:

We instead propose a nhew metric that TPR

additionally penalizes FPs: I55scaled = TPR = g5

= FPR E [_TPRmax, TPRmaX]
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VGG-16 optimization ERT optimization on
on threshold min_impurity_decrease_index

Model stage | Optimized metric Optimal hyperparameter TPR FPR
CNN-only TSS threshold = 0.3 0.90 £0.05 | 0.13 £ 0.02
CNN-only TSSgcaled threshold = 0.4 0.75 £ 0.09 | 0.06 + 0.01

CNN+ERT TSS min_impurity._decrease_index = (0.001 | 0.90 £ 0.05 | 0.12 4+ 0.02

CNN+ERT T Sscalad min_impurity_decrease_index = 0.00012 | 0.65 £+ 0.11 | 0.03 &+ 0.01

The TSS. .o metric significantly reduces FPR in the prediction, while slightly

impacting the TPR.

Results: False Positive Reduction and Feature Ranking
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Metrics sensitive to FPs improve significantly in the CNN+ERT model
(resultjos across 10 different dataset splits).
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The ERT model can also be used for feature ranking. The cnn_prob output from the VGG-16 model
ranks highest, followed by the R_VALUE feature due to Shrijver.

Conclusions

We propose a hybrid two-staged CNN+ERT model for solar flare prediction using
SDO/HMI magnetogram. Important findings from this paper are:

1. The CNN model performs best when trained on temporal sequences of the Br
component of magnhetograms.

2. The two-staged model is shown to be effective in lowering the false positives,
thus reducing overforecasting.

3. The proposed metric --- TSS, .4 --—- for optimizing the hybrid model selects
hyperparameters that further reduce false positives.

4. The ERT component of the model is useful for feature ranking, showing that the
VGG-16 prediction is the best feature for discriminating flaring and non-flaring
magnetograms.
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