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• The interaction between the solar wind and the Magnetosphere can produce Geomagnetically Induced Currents (GIC’s) on 
the ground, which can cause power outages and damage to crucial infrastructure.

• The ability to predict when and where these events may occur could allow us to avoid the worst of this damage.
• The use of machine learning models can offer a computationally inexpensive method of predicting GIC events using 

horizontal dB/dt as a proxy, though most models thus far have fallen short of consistently accurate predictions. dB/dt was 
defined as:
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with N and E the North and East components of the magnetic field respectively.
• Here, the skill of a Convolutional Neural Network (CNN) was used to determine the risk of dB/dt going over a threshold of 

7.15 nT/min for six ground magnetometer stations.
• The threshold was determined by taking the 99th percentile value of dB/dt for all magnetometer stations between 50 – 60

MLAT.
• Eight storms were chosen for testing and removed from the training set: March 30, 2001; August 31, 2001; May 15, 2005; 

August 31, 2005; December 16, 2006; April 5, 2010; August 5, 2011; March 17, 2015.
• The storms were based on the suite of GEM Challenge storms, minus the October 2003 storm due to the data gaps, with

additional storms added from Welling, 2018.

• The model was trained exclusively on storm time data as defined by adding 12 hours of lead and 24 hours of recovery to SYM-H 
minimums of less than -50 nT .

• The storm data was extracted from a combined data frame of ACE and Supermag data.
• 6 Mid-latitude magnetometer stations were examined (MLAT averaged over period of 1995-2019): OTT (55.93º), NEW (54.92º), 

VIC (53.83º), WNG (50.29º), STJ (53.68º), and ESK (52.86º).
• The input features included solar wind speed (Vx, Vy, Vz), IMF_GSM (BT, By, Bz), proton density, dynamic pressure, SYM-H, 

AE INDEX, horizontal magnetic field (N,E), dB/dt, and ground magnetometer sin(MLT) and cos(MLT).
• The CNN model utilized 60 minutes of time history to determine if the dB/dt value would go above the 7.15 nT/min threshold, 

between 30 and 60 minutes into the future.
• The CNN models consists of 1 CNN layer, using ‘RELU’ activation. This was followed by a MaxPooling layer, a Flatten layer and

two Dense layers with Dropout layers in between. The final layer is a Dense output layer using 'softmax' activation. The 'softmax' 
activation layer allows the model to interpret the inputs to the layer as discrete probability distributions, allowing us to interpret the 
outputs of a node as the probability of that node occurring. In this case the output of the node is the probability that dB/dt will cross 
the given threshold.

• The softmax activation can be described:
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• To determine the skill of the models a variety of metrics were calculated, including the Mean Bias and the Area Under the 
(Precision-Recall) Curve (AUC). The Root Mean Squared Error (RMSE) was also calculated, as was the standard deviation of the 
predicted values for comparison to the RMSE.

• The AUC metric utilizes a comparison of actual and predicted threshold crossings, where:
A is a True Positive, where both the actual and predicted cross the threshold
B is a False Positive, the actual does not cross but the predicted does
C is a False Negative, the actual crosses but the predicted does not
D is a True Negative, neither actual nor predicted cross the threshold

• The RMSE, as well as the Precision, and Recall metrics used for plotting the Precision-Recall curves, are defined as:
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• The Precision-Recall curve is calculated by changing the threshold above which the predicted data is considered 
positive, calculating the above Precision and Recall metrics, and then raising the threshold and repeating. The curve is 
then plotted with the resulting arrays.
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Figure 1: The real and predicted values for three selected storms. The orange bar at the top of the station panels indicates areas where the real data is positive, i.e. the dB/dt will be 
over 7.15 nT/min between 30 and 60 minutes in the future at the magnetometer station indicated on the left of the panel. The dark blue line indicates the mean probabilistic output of 
the positive node of the model. The light blue shaded area around the dark blue line indicates the 95% confidence interval calculated using 50 shuffled splits of the training data. The 
first three panels are solar wind Vx, Bz_GSM, and proton density at the L1 point as measured by ACE.

Figure 2: Precision-Recall curves for all stations and storms. Curves are drawn using the median result of the 50 shuffle split models using the calculated AUC 
as the indicator of the median. A perfect score for the AUC is a 1, and a score of 0 indicates a model that performs the same as a random chance model. The 
models perform well on all the storms with the exception of the September 2001 storm, the least intense storm in the testing suite, though the models still score
better than random chance when testing on this storm for all stations.

Figure 3: Mean Bias, AUC and RMSE results for all stations and storms. Mean values are plotted with the error bars indicating the 95% confidence interval. 1a) is the 
Mean Bias, where a positive score the mean results of the model are higher than the mean results of the real data indicating the model is over predicting, where a 
negative result indicates underpredicting. Our results show a trend of underprediction, though this metric is very broad. The AUC (3b) scores for most of the storms are 
above 0.6, indicating skillful models. The RMSE (3c) does not get above 0.4, though most of the results show room for improvement.

• The models appear to perform well, with relatively narrow confidence intervals, indicating a reliably designed model. 
• Similar studies we have performed used data from the OMNI database, which is propagated to the bow shock. This 

study used ACE data from the L1 point. While a full study of the differences has not been performed, the AUC results in 
Figure 3b appear significantly higher than previous results. This is most likely due to the extra lead time provided by 
ACE being at the L1 point.

• The RMSE shows room for improvement given the nature of the 0,1 binary classification. The standard deviation of the 
predicted data was also calculated (not shown) to compare to the RMSE. The RMSE should be lower than the standard 
deviation, which was not universally the case in our results.

• The storm plots in Figure 1 show the models are capable of capturing the initial onsets of the spikes in dB/dt.
• Models show increases in probability when there are rapid changes in the solar wind conditions. For the Dec 2006 and 

Mar 2015 storms, there are clearly seen jumps in the solar wind velocity and proton density coinciding with the jump in 
the model probabilities. There appears to be a positive correlation between Bz variability and model probability output.

• Overall, while improvements can be made, the models show promise in their ability to forecast elevated levels of dB/dt 
with narrow confidence intervals, in a future time window using solar wind and ground magnetometer data. 


