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INTRODUCTION & MOTIVATION
●Big-data problem in astronomy [1]
●Deep learning is showing promise in dealing with 

complex data - images, videos [2]
●Manual supervision demands time and consistency
●Iterative labelling approach such as 'active learning' [3] 

can save time 
●We focus on a specific problem: 'flux emergence' 

depicted by the appearance of bipolar/complex magnetic 
regions on the solar surface and can have potential to 
drive solar events to modulate space weather and affect 
communication satellites [4]

●We start with a crudely labelled flux emergence data, 
train a deep learning model-ensemble and refine the 
labelling using the trained models as described through 
the rest of this poster 

CONCLUSION
● We classify MDI magnetic patch evolution into emergence or non-emergence
● Given the limited size of data points, we train a model-ensemble and reach a classification accuracy of 83%
● We also find that apart from video classification the model identify the time of emergence
● We show that the deep learning model can be used to refine the labelling of a crudely labelled dataset 
● Usage of the model iteratively rules out the need of manually verifying the entire data

INITIAL DATASET
● SoHO/MDI [5] LOS magnetic patch videos 
● Video size after interpolation 90x90x225 in Carrington 

longitude, latitude and time grid
● Crudely Labelled for active region ‘emergence’ and 

‘non-emergence’ using BARD catalogue [6]
● Binary video classification problem

Abbreviations: 

➔ LOS = Line Of Sight
➔ BARD = Bipolar Active Region Detection 

MODEL REPURPOSING: FRAME LABELLING
● We repurpose the model to pinpoint the time of 

emergence

● For this we truncate videos from the end until maximum 
change in inference 

● Model identifies emergence times within [-1.6, 2.4] days 
from the ground truth times for 90% of the cases

● Saliency analysis to check if the model is giving 
importance to the right regions

ITERATIVE RELABELING
● Starting with crudely labelled data we train and evaluate 

the model-ensemble on respective validation blocks, 
manually verify model vs. crude label disagreements 
and  repeat this process until convergence generating 
high quality labeled data

● After 4 iterations we correct 85% of mislabels by 
manually verifying only 50% of the data
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● VGG like CNN architecture [7,8]

● Training-validation combinations with random 
realisations: ensemble of 10 CNNs

● ~1600 videos for training and ~400 for validation 

● We achieve 83% classification accuracy on the test 
set

● No systematic effect introduced by solar cycle phase 
on accuracy

CNN MODEL & PERFORMANCE

CNN = Convolutional Neural Network


