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/— 1. INTRODUCTION

Energetic (>10s keV) electrons can
precipitate from the outer radiation belt into
the atmosphere due to interactions with
plasma waves (Figure 1) or when magnetic
field lines are significantly stretched away
from Earth (current sheet scattering, CSS).
These two drivers can be distinguished by
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2. MOTIVATION and GOALS
( Precipitation is an important mechanism that leads to depletion of the outer radiation \
belt flux and space weather effects (e.g., ionization enhancements, chemistry changes,
etc.). Finding precipitation events and identifying their associated driver is challenging and
time-expensive.

We use deep learning to identify the relativistic electron precipitation within each
radiation belt pass observed by POES and categorize events between those driven by
waves and those driven by CSS. Ultimately, obtaining such dataset will allow us to study
the distribution of the precipitation drivers at all MLTs and L shells, and understand the

4. MODEL ARCHITECTURE and PERFORMANCE

[ We use LSTM (Long Short-Term Memory), an artificial recurrent neural network\
architecture suited for time series classification as the one in this study. The

model consists of one layer of 64 bidirectional LSTM units + 256 dense units,
with dropout at 0.5 rate after each layer.

We use the standard classification metrics: F1 score,
AUC (area-under the ROC (receiver operating
characteristics) curve, and AUPRC (area under the
precision-recall curve). We obtain a model performance
of F1~0.95, AUC~0.99, and AUPRC~0.99 from the k-
fold cross validation with k=10, with a confusion matrix
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Figure 5: Example of the test dataset: a) comparison between original
\and predicted class, b) electron flux with precipitation events (gray). )
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6. CONCLUSIONS
[ - Depending on the shape of the electron precipitation observed at LEO, WD
can identify the associated driver (waves or current sheet scattering)
- ML techniques are fast and effective in identifying relativistic electron
precipitation and classifying events between wave-driven and CSS-driven
- Our LSTM-based model is successful at identifying the precipitation events
\and categorizing them by driver. J

(espective contribution to the total electron precipitation. J
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The dataset (Figure 5) used in the supervised deep learning classification is made of:
- Window of 50-point-long data points for each precipitation event
- 230 REPs (label 1) & 174 CSSs (label 2), randomly stacked, visually classified
Label is O adjacent to the REP/CSS
Each event is vertically mirrored (data augmentation)
8 Features: electron flux from 4 POES electron channels (0° and 90° look-directions)

1 Target: class (0:no-event, 1:REP, 2:CSS), one-hot encoded J
5. MODEL APPLICATION ON REALISTIC DATA \

g

To test if the model performs well on
realistic data (full POES orbits, as in
Figure 3), we apply the model to several
days of POES data.
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A\ Figure 6: Examples of REP events (left) and

CSS events(right) identified by the model J
7. FUTURE PLANS
[ - Post-Processing of the model outputs (handle false positives and time shift) \
- Obtain a dataset of REPs and CSSs for the entire POES dataset (from 2012 to
present time) to study the REP vs. CSS L-MLT distribution and contribution to total
electron precipitation

- Predict precipitation events from solar wind and/or geomagnetic indices (if you have
\ any thoughts, please let’s discuss!) )

Research supported by NSF (AGS-1723588, AGS-2019950), NASA (80NSSC20K0698, BONSSC20K1270, BONSSC21K1385) and P. Sloan Fellowship (FG-2018-10936).


https://www.frontiersin.org/articles/10.3389/fspas.2022.858990/abstract
https://www.frontiersin.org/articles/10.3389/fspas.2022.858990/abstract

