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Most of the models used in Space Weather (physics-based or empirical) are deterministic, meaning A Reliability d'ag_'_‘"’_‘m measures how closely the nereonien - o First, we need to define a Reliability Score (RS), i.e.
that they provide single-point predictions. forecast probabilities of an event correspond to SN a measure of how reliable a model is.
the actual chance of observing the event. Eed Again we restrict to the case of Gaussian forecast.
It is important to be able to generate probabilistic forecasts, that is to associate uncertainties to It shows the Observed frequency < | T B | Broblem re-re-statement-
single-point predictions. of an event plotted against its P The main idea is that for a reliable model the relative . T
Indeed, many would argue that Forecast probability. r o errors are also distributed normally. Given adnlImeedr_ of observations y and
a forecast is not a forecast if it is not probabilistic! s We define the RS as: model predictions gy we want:
How to generate a probabilistic forecast L ey T 5= Lot e 1) to estimate the optimal standard
g p Reliability is necessary but not sufficient. Why? Take a climatology model (prediction based on the long-term with m; = (v — ;) /(v203) the relative errors, and the cdf & () = ! (erf(n) + 1) deviations o that minimizes the AR
from a determini StiC mode|’) observed average). By definition Climatology has perfect reliability, but no skill! cSiece G herempiiial qumilifive iskiimlibns it Theseelafive-exrons i ialia " .
_ _ _ We also need accuracy! - cost function;
The ACCRUE (Accurate and Reliable Uncertainty Estimate) )= & T HO - o

2) to have a mechanism that
generates o as function of the inputs
X for unseen data (i.e. without having

A crucial detall of this work Is that the RS as defined above

method solves that prObIem ACCU racy: hOW dO yOU meaSU re it? can be calculated analytically, via expansion into a

The standard way is by ensemble modeling, i.e. in a Monte Carlo fashion: one produces an | | | telescopic series: the observations y)
ensemble of (single-point) forecasts by slightly changing the initial conditions or some other Many scores have been proposed. Here we make the two following working assumptions: RS [ Getn) +1)— 2 1) + exp(n.?)] 1/2
parameters of the model. The ensemble results can then be interpreted probabilistically. * The output of interest is a real continuous variable 0 =iLN N? VN 2V m
. * The forecast we want to generate is a Gaussian distribution i S Keeping in mind that the CRPS and the RS are competing We use a c!ee neural network to
Serious drawbacks of the Monte Carlo approach: . . . | ) . O AP achieve both goals
In this case, one appropriate score to measure the forecast accuracy is the ¢ Gontinuous Rank Probakity Soore (GPS) scores, this becomes a two-objective minimization
* Robust but extremely expensive: very slow convergence rate (square root of the number of Continuous Ranked Probability Score 08 8 ) | | problem. o _
samples); S e T | We can finally define our Accuracy-Reliability cost function
» Let £/(x)be the forecast probability CDF for the ith forecast case. . € Q: , +,\ \\ as a |inear COmbin ation Of the two:
. T - . . - « Let 7 pe the observed probability CDF (Heaviside function). In the case of Gaussian 04 ;,/,-ci \%\ |
Assumes that one knows the correct probability distribution of inputs/parameters, which are often T i forecast the CRPS has an oz /" \ % AR = -CRFS + (1 B)RS.
non-observables. To be done correctly, this would require a Bayesian calibration as in: CRPS (forecast)=——o 30 [ (/)= F(x)) o analytical expression: N ) )
\(squared) % 05 { 15 2
;3RP33.";3§S;;;9225?4(524001) "y (a) For?ccsf PD,F and 053 eeeee d : (a) For?cosf n::I‘O served CDF & We choose the Scaling factor ,6 as
_ o ” caoy o |V (Y 2 (w1
Bayesian calibration of computer models 0.3 CRPS(p, 0,4°) [ - f( N ) + \/; P( 952 ) ﬁ] B — RS pin/(CRPS pin -+ RSy ).
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where p is the mean, o the
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which itself requires Markov-Chain Monte Carlo samples! /\\ standard deviation and y°
s e e the observed value.

Do not EVER run an ensemble simulation without having performed N - L :
a Bayesian calibration of your parameters! For a perfect (deter(n;inistic) Forecast CRPS =0 Ta-ke home message (and resu ItS)

=
o

We have designed a generative model that:
Wh t - b b I - t f t Problem re-statement  Takes a set of deterministic forecasts and the corresponding ground truth values (the
o . . details of the deterministic model are not important: it can be empirical or physics-based
a IS a pro a I IS IC orecas We have a deterministic model that produces an output u, as a function of a multi- o _ P o o P _ phy )
anywayf) dimensional input x. * Transform the deterministic forecasts into probabilistic predictions, in the form of Gaussian
™ ] IReIiabi!itydiagram | dlstrlbutlons
The general public does not understand the meaning of a probabilistic forecast We want to use H as the mean value of a Gaussian distribution that is B8 :§EE§§§§ % * Th babilistic f ti teed to be both t d reliable (i trade-off
g P g P interpreted as a probabilistic forecast. 2" o % ! ;e pro t6r11 | |ts IC) orecast is guaranteed to be both accurate and reliable (i.e. a trade-o
206 | “o. * etween tne two
Risk Analysis, Vol 25, No. 3, 2005 DOI: 10.1111/5.1539-6924.2005.00608.x Wh t - th t | | t h f th t d d d . t 5 % oremes ] ] ] ]
“A 30% Ch £ Rain T . How D the Publ; at Is the optima Yr? U:neC: a‘i a?s%sefu r?gtio : g"f i“ ard deviauon o : g o % | * By using a neural network the standard deviations are generated as function of the
© ance o . fm_] omorrow — How Loes the Fublic (ing ) §ozr 1 multidimensional input, for any (new) input.
Understand Probabilistic Weather Forecasts? £
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Gl:'(}(GlgEl‘E]lﬁZEl’, V l:(alp_l;{HEl'tTlgi E"Fa yvan dE“ BI‘DEk, Bﬂl‘bﬂl‘ﬂ Fﬂﬂﬂl{H IDEA (tha‘t does not Work): Deflne O as the one that minimizes the score CRPS Predicted probability reported, ca]culall;\edcl o}:‘e;SU runs. Confidence m(t;:;::: 1‘ep1‘esent]:>rl‘1tsciindard devlat;;; Best valu%:ércelili;;‘old
t t . t etho - 4 ) D
an onstantinos atsIKopouios ThIS iS s Slm I diﬁerentiate Examplg.' for the same model, by I " — SmreSize __ CRPS
“30% chance of rain tomorrow” o “oVaer(5m) eraoity dearam o | R BR B E R R
o _ do # 20 A _ _ _ 5| 3 Energy 768 8 0059 +£0.03 00564003 0.087+001  0.052 % 0.01
The minimizer of CRPSis _ nence e variance is proportional to R
What does it mean? the error. Omin, CRPS = € /log?2 2 Protein 45730 9 0382002 0471013 04020007 037%0.02
- Wine 1599 11 0.48 = 0.03 0.50 + 0.29 0.46 £ 0.02 0.48 &+ 0.06
' Yacht 308 6 0.06 = 0.08 0.06 + 0.02 0.19 £ 0.02 0.06 + 0.02
‘it : T ' ? The approach of simply minimizing CRPS does not work | Score Cal. err. (%)
If you take a large enough sample of days for which it is predicted “30% chance of Why does it not work PP Ply minimizing ’ : et Sz Dim
Y Mok At J % P Y P because it generates forecasts that are not reliable (i.e. CRPS does not enforce Bovion Howing 30615 | 279 W6E55 17537 167459
rain”, it rains in about 30% of these. Tomorrow belongs to that sample. reliability) Jiml] : Cowte 1030 § | 2m0is8 14iis  miis0  lsed
0.8 KinSr%l'; 8]9.2 8 15‘_6 + ].A‘Z;,S g;i ];3.0 2‘35 + 0’5 5.§.§:|: 'l.iS
. . . . . . Power plant 9568 4 125+ 14 34+009 16.1 +£0.8 2.6+ 08
Or, more simply (but you must really be a Bayesian): it will rain in 30% of all the IDEA (that works!) oo #5730 9| BIEOT  S#EEs  106%09  S4E0ss
. . . . . - Yacht 308 6 26:0j:;):4 24t3i1;%.5 35.6:&3..0 19..5:|:8..5
instances of tomorrow. Define a cost function that enforces simultaneously reliability and accuracy.
IS | initi : _ rahili - Example: DEN2D is a data-driven, deterministic model that estimates the electron plasma density in
- Th Is is the dEfIn_"EIOI_‘I of We call it the Accuracy R6|Iabl|lty (AR) cost function the plasmasphere. We generate probabilistic predictions based on DEN2D. The colormap is the
Rellablllty of a prObabIhStIC forecast electron density mean, the isocontours the associated standard deviations
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