

Enrico Camporeale (CIRES, University of Colorado at Boulder & NOAA Space Weather Prediction Center) https://ml-space-weather.github.io

Problem statement

Most of the models used in Space Weather (physics-based or empirical) are *deterministic*, meaning that they provide single-point predictions.

It is important to be able to generate *probabilistic* forecasts, that is to associate *uncertainties* to single-point predictions.

Indeed, many would argue that a forecast is not a forecast if it is not probabilistic!

How to generate a probabilistic forecast from a deterministic model?

The ACCRUE (Accurate and Reliable Uncertainty Estimate) method solves that problem

The standard way is by ensemble modeling, i.e. in a **Monte Carlo** fashion: one produces an ensemble of (single-point) forecasts by slightly changing the initial conditions or some other parameters of the model. The ensemble results can then be interpreted probabilistically.

Serious drawbacks of the Monte Carlo approach:

- Robust but extremely expensive: very slow convergence rate (square root of the number of samples);
- Assumes that one knows the correct probability distribution of inputs/parameters, which are often non-observables. To be done correctly, this would require a **Bayesian calibration** as in:

J. R. Statist. Soc. B (2001) 63, Part 3, pp. 425–464

Bavesian calibration of computer mode

Marc C. Kennedy and Anthony O'Hagar

which itself requires Markov-Chain Monte Carlo samples! Do not EVER run an ensemble simulation without having performed a Bayesian calibration of your parameters!

What is a probabilistic forecast anyway?

The general public does not understand the meaning of a probabilistic forecast

Risk Analysis. Vol. 25, No. 3, 2005

DOI: 10.1111/j.1539-6924.2005.00608.x

"A 30% Chance of Rain Tomorrow": How Does the Public **Understand Probabilistic Weather Forecasts?** Gerd Gigerenzer,^{1*} Ralph Hertwig,² Eva van den Broek,¹ Barbara Fasolo,¹ and Konstantinos V. Katsikopoulos¹

<u>"30% chance of rain tomorrow"</u>

What does it mean?

If you take a large enough sample of days for which it is predicted "30% chance of rain", it rains in about 30% of these. Tomorrow belongs to that sample.

Or, more simply (but you must really be a Bayesian): it will rain in 30% of all the instances of tomorrow.

> This is the definition of **Reliability of a probabilistic forecast**

E-mail: enrico.camporeale@noaa.gov Camporeale et al. (2019) On the generation of probabilistic forecasts from deterministic models, Space Weather, 17(3), 455 Camporeale, E., & Carè, A. (2021). ACCRUE: Accurate and Reliable Uncertainty Estimate in Deterministic models. International Journal for Uncertainty Quantification, 11(4).

Space Weather with Quantified Uncertainty: Optimizing Ensembles for Probabilistic Predictions

Accuracy- Reliability cost function Problem re-re-statement: Given a number of observations y and model predictions μ we want: 1) to estimate the optimal standard deviations σ that minimizes the AR cost function; 2) to have a mechanism that generates σ as function of the inputs x for unseen data (i.e. without having the observations y) <u>We use a deep neural network to</u> achieve both goals

Take home message (and results)

• Takes a set of deterministic forecasts and the corresponding ground truth values (the details of the deterministic model are not important: it can be empirical or physics-based) • Transform the deterministic forecasts into probabilistic predictions, in the form of Gaussian

• The probabilistic forecast is guaranteed to be both accurate and reliable (i.e. a trade-off

• By using a neural network the standard deviations are generated as function of the

	Method			CRPS	RECAL	КМ	ACCRUE	
4	Score			CRPS				
	Dataset	Size	Dim.	1				
3.5	Boston Housing	506	13	0.25 ± 0.05	0.25 ± 0.04	0.25 ± 0.03	0.23 ± 0.0	
	Concrete	1030	8	0.22 ± 0.03	0.23 ± 0.13	0.26 ± 0.02	0.21 ± 0.0	
3	Energy	768	8	0.059 ± 0.03	0.056 ± 0.03	0.087 ± 0.01	0.052 ± 0.0	
2.5	Kin8nm	8192	8	0.17 ± 0.005	0.16 ± 0.01	0.24 ± 0.005	0.16 ± 0.0	
	Power plant	9568	4	0.13 ± 0.003	0.13 ± 0.05	0.15 ± 0.002	0.12 ± 0.0	
2	Protein	45,730	9	0.38 ± 0.02	0.47 ± 0.13	0.40 ± 0.007	0.37 ± 0.0	
1.5	Wine	1599	11	0.48 ± 0.03	0.50 ± 0.29	0.46 ± 0.02	0.48 ± 0.0	
	Yacht	308	6	0.06 ± 0.08	0.06 ± 0.02	0.19 ± 0.02	0.06 ± 0.0	
1	Sc	Score			Cal. err. (%)			
	Dataset	Size	Dim.					
0.5	Boston Housing	506	13	26.2 ± 7.9	20.6 ± 5.5	17.5 ± 3.7	$16.7 \pm 5.$	
0	Concrete	1030	8	22.6 ± 5.8	14.4 ± 3.8	22.1 ± 3.0	11.5 ± 3.9	
	Energy	768	8	29.3 ± 8.9	29.2 ± 8.0	28.3 ± 2.8	13.0 ± 6.5	
-0.5	Kin8nm	8192	8	15.9 ± 1.28	8.3 ± 1.30	25.5 ± 0.5	5.8 ± 1.2	
-1	Power plant	9568	4	12.5 ± 1.4	3.4 ± 0.9	16.1 ± 0.8	2.6 ± 0.8	
	Protein	45,730	9	13.1 ± 0.8	5.0 ± 0.9	10.6 ± 0.9	5.4 ± 0.8	
	Wine	1599	11	16.0 ± 3.7	7.9 ± 2.0	8.0 ± 2.4	8.3 ± 2.4	
	Yacht	308	6	26.0 ± 9.4	24.3 ± 13.5	366 ± 30	195 ± 84	

University of Colorado Boulder