SPACEAB| E Forecasting low-energy particle tlux
in LEO : data analysis and first results

Simon Bouriat!#3#, Mathieu Barthélémy!?, Jocelyn Chanussot?

1. Univ. Grenoble Alpes, CNRS, IPAG, F38000 Grenoble, France
2. Univ. Grenoble Alpes, CSUG, F38000, Grenoble, France
3. GIPSA-Lab, Grenoble Institute of Technology, Grenoble, France
4. SpaceAble, 89 Boulevard Magenta, Paris, 75010

Introduction ACE Data Analysis Results

Low-energy particle fluxes: Here defined as Histograms ;
precipitated electrons (i.e., electrons carried along «10* _ Histogram of proton speed - Declining phase 10
magnetic field lines from the magnetosphere to the § § 55
ionosphere) in LEO with energies < 40 keV. °| §
Existing models: First models appeared as early as - Bx (GSE) |nT] 6,93x 10°| 84x 10 0.6 204 0.128 %
1987. The current state-of-the-art is here considered S 5 ByAlC Bl nt 2.98 X 10:2 - 900 10:3 -30.7 087 LIS
, , 8 Bz (GSE) [nT 9.34 x 103| 2.20 x 102 -43.5 32.3 0.128 %
to be the last version of OVATION Prime [2] and = " Bt (GSE) [nT) T = 04 0.3 LT 0198 % 18 6
PrecipNet Deep Learning model [1]. il Proton Density [p/cc] 5.88 4.54 0.1 30.0 RS 2
T lﬂu\ - Proton Speed [km/s] 4.30 x 10?] 4.08 x 10?| 2.38 x 10?| 1.03 x 10° 6.80%
s DD fopic s part of  larger project that aims || /A [Ton Tomperaure K] | 520 10] 705 0] 351 107 100 10 R
at creating a rigorous statistical and empirical code ' istributi e e ind' Table 1. Mean, median, percentage of missing data, 99.995®" and 0.005%" percentiles for all
to predict the particles' environment in LEO and Figure 1. Distribution of solar wind's speed [km/s] variableé choser; e AéEpsatelljt 5 g ; 9. : p
GEO. The final purpose is to prevent hazards on * Distributions are not uniform at all. Rare cases are underrepresented, and algorithms will be unbalanced in
satellites such as surface charging, internal charging their learning. Moreover, gaussian distributions could be overly brought by gaussian noise from measurements 1+
or total ionizing dose, and their consequences such as and signal-to-noise ratio is difficult to estimate. con Histogram of Proton temp 541%12; 7ﬁdT§ZtL Tdaétag 120110tflzailureﬂgfrﬂsdfrrimdiDnMS]f 1611; £
clectrostatic - discharge or single-event effects, by * Models will not be reproducible from year to year 450 - AACGI\?. T E
observing the upstream Sun-Earth chain (from near- due to high changes in histograms over time (e.g., 400 . 12 5
Sun with SOHO, to L1 with ACE, GEO with GOES figure 1). This high dependence to the solar cycle 350 -
and LEO with DMSP & POES). suggests that one should have at least 11 :
consecutive years of data to train the algorithm. :
Here our work is divided into two parts: the data * Rounding of ion temperatures values to different :
analysis of ACE data gathered from the ACE orders  of magnitude throughout the data, - :
Science Center (ASC) [3] and first results over (probably due to a fix number of bits on which m J |
McGranghan et al. [1] datasets using Deep Learning. measurements are coded) will bias the model by |
This first step is then a solar-wind-driven model, wrongly over-representing or under-representing P " 10 12 4 16 e
which is, according to Newell et 'al. 1], ir.1di(.3ated er some values (figure 2). Piaure 2. Distribu;;‘;:"gftizg temperature [K x10°
long-term space weather forecasting and indicated in

Missing values

understanding the solar-wind-magnetosphere
coupling. Moreover, our approach is using PyTorch
Lightning to be easily extensible to all sources of
data thanks to the use of a Dataloader.

. . .. Percentages of missing values per year
 There is an extensive number of missing 100 -

values (e.g., 41.59% in proton density
data), that cannot be forgotten and

cannot be implemented without
Ob J ectives processing. =~ The  choice  of  the
corresponding processes will be subjective

but should consider the distribution of
missing values. For instance, large gaps of
consecutive missing values cannot be 0

B Proton density
B Proton Temperature
[ IProton Speed

80 |-

60 |- 0

Figure 8. Forecasted value for data shown in figure 6.
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Our ANN is not very reliable on high values / rare
cases.

 Our RMSEs for the two cases (16-bit and 32-bit
floating points) are respectively 0.6838 and 0.6904,

Objective: Forecast low-energy particle fluxes in
LEO by preparing the implementation of a Machine
Learning (ML) algorithm to and improve existing
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models filled in using spline interpolation. 2000 2005 Yeaiom 2015 2020 while RMSE of PrecipNet was 0.764 4+ 0.011 and
In thi ‘ Figure 3. Percentages of missing values for SWEPAM data over the 1998-2020 period. RMSE of OVATION was 1.887 [1]
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1. Analysis of ACE's solar wind & IMF 2-D statistical analysis vTv?fe Vaz]lpe;rc())iizl;te‘ﬁfhdait.?n é(ftses qou?cfﬁf 1r§2ﬁ§3
pz?urameters (instruments. SWEPAM and MAG) 2-D statistical distribution for log(Speed) and log(Temperature) o the Solar Wind . 2.D statistical distribution for Bx and By GSE e approximately 0.6 around the 4t or 5% epoch. This
2. First results on forecasting using McGranaghan | - suggests that most of the information contained in
et al. [1] data. | 10 00 the data has been learnt by the ANN by the 10t

12000 S | 14 epoch.

1200  Last assertion is confirmed by the fact that our

ACE Solar Wind Data: Level-2 Real-Time Solar
Wind (RTSW) data from the Advanced Composition
Explorer (ACE) from the ASC [3] - 1998 to 2020.

1000 results with only 100k train samples and 10k

800 validation samples are the same
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Conclusions & Perspectives
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55 6 6.5 7 19 T = 5 g 10 s e The main conclusion here lies in the input data.

The following 16-seconds MAG data: 45 365 393 log(lon Speed) Bx [nT] Even with a robust scaler, very high-values remain

data points Figure 4. 2-D statistical distribution for log(speed) and Figure 5. 2-D statistical distribution for the X and Y-components : : :
» IMF X, Y and Z-component, GSE [nT] P § B(speed) © P and probably constrain the algorithm from learning

log(temperature) of the solar wind. of the IMF [nT]
properly. Solving this issue will help us identity how
much information is contained in the data.

* (Correlation matrix showed a 0.685 correlation coefficient between speed and temperature of the solar wind.

The following 64-seconds SWEPAM data: « The two-dimensional statistical distribution for the X and Y-components of the IMF (figure 5) shows the e Another conclusion is that we have a laree
 Solar wind proton density |[p/cc| 11,299,710 approximate 45° angle between the IMF vector and the radial Sun-Earth direction. . . . .g
: numerical error as seen in the different results using
* Solar wind bulk speed [km/s] data points . . .
P 16 or 32-bit tloating points.

Correlations, Autocorrelations & Principal Component Analysis

* Solar wind ion temperature [K] e It is odd that 100k-train samples and 600k-train

Principal Component Analysis samples have the exact same results, although the

A linear model will not be able to accurately

Al-Ready data: From McGranaghan et al. (2020) [4], model the data. Our linear analysis (e.g., gm B orcentage of varonce xpianed 1 same magnitude was expected. This will be
we gathered DMSP Particle Precipitation data that PCA), struggle to explain the data and their  §1o — }"‘z“_——f—/’ | g?iiiﬂa?ﬁe?ii?ﬁ%i investigated. |
are supposed to be Al-ready. We use this dataset to relationships. However, non-linear relationships g 4| soames_— |\ for each principal * Several tests remain: batch, seed, dropout, MAE,
gain some time and be able to perform tests in between data seems to exist. %i | ’/ | component, from prin- learning rate, sampler and optimizer.
1lel . . 5 e / cipal component ana- * In the long run, one idea will be to build two 2-
parallel. * Data seem cyclic: apparition of the solar cycle g, | : o lysis ,
and the synodic rotation period of the Sun R block neural networks. One 2-block will be made of
Methodol . . S20f [N mmimn i one neural network handling rare high-values data
€clL10dology when looking at autocorrelations. Q ; [s.7592% | 6 omasen | [ , ,
0 B e and one neural network evaluating the quality of
1 2 3 4 6 8 . . . .
Two works done in parallel are presented here: Principal Gomponents 7 the corresponding prediction. The other 2-block will

be the same but with low-values.
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» Histograms analysis * No L1/L2 regularization

* Loss function: nn.MSELoss()

 Handling missing and extreme values
* Plotting correlations, autocorrelations

e 2-D distributions analysis

* Doing a Principal Component Analysis « 50k validation samples.

Figure 5. Train (respect. red and green) and Validation (respect. blue & pink) loss functions for two
. L different precisions (respect. 32-bit and 16-bit floating point) with same hyperparameters (right). e 55210 test samples.
First results for artificial neural networks by: ACkﬂOWl@dgmeﬂtS

Inputs are the data from [4], so-called AI-Ready data.
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