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Key Points

•We develop a multi-variate LSTM code that predicts
magnitude of north-south component of geomagnetic
fields (|BN |) using 15 years of SuperMAG Alaska
Magnetometer data and OMNI solar wind data.

•Multivariate LSTM prediction shows reasonable
agreement with geomagnetic field observations with high
correlation coefficients.

•A secondary model to predict a sign of (|BN |), named a
polarity model, was trained for each station with an
average HSS of 0.92.

•A coupled model, created by combining both models of
|BN | and a sign of BN , shows promising results to predict
BN as a function of solar wind and IMF conditions.

Introduction

Geomagnetically induced currents (GICs) are produced when the
solar wind interacts with the Earth’s magnetic field, driving dis-
turbances that map to the Earth’s surface. Electrically conduc-
tive materials like the Earth’s crust, in the presence of these dis-
turbances, experience electric fields proportional to that of the
changing geomagnetic field which are known as geomagnetically
induced electric fields (GIEs). These GIEs, if strong enough,
produce currents in exposed electronics on the ground that can
disrupt and damage components. GICs have been known to
cause power outages, transformer damage, and pipeline corro-
sion on the ground which impacts our technology and fossil fuel
dependent economy; such an event was the cause for a 9 hour
power grid blackout in Quebec, Canada on 13 March, 1989,
where strong GICs overloaded and damaged a transformer of
the Hydro-Quebec electric company.
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LSTM

Long Short-Term Memory (LSTM) neural networks were chosen
for their adept ability of ’remembering’ past information. This
is done through the cell state of the kernel which is updated as
new information is supplied to the model and then passed along
to the next time step. This allows LSTM to surpass standard
recurrent neural networks where relevant information becomes
phased out by new information within a few iterations. The
LSTM networks trained utilized 32 hidden units, a batch size
of 360, ReLu activation layers, and implemented early stopping
to avoid overfitting. The models were trained off of the supplied
data discussed in the data section with a cube root normalization,
which were supplied in 30 minute segments to predict the next
observed geomagnetic field value. Multiple models were made
with variations to test the best configuration, these variations
include past d|BN |/dt information in the input parameters to
predict absolute value of the geomagnetic field.

Data

To train the model we utilized 15 years of NASA OMNIweb solar
wind and SuperMAG data with a 10 minute linear interpolation
to fill in small gaps within the solar wind, increasing its volume
from roughly 70% coverage to 80% coverage without creating
significant periods of interpolated data. From OMNI we focused
on IMF magnitude, BZ, flow speed, flow pressure, ion density,
and temperature. SuperMAG provided the ground geomagnetic
field for 4 stations across Alaska in a line perpendicular to the
auroral oval, which is important for future ionospheric current
modeling. To keep MLT dependence within the model, where
we see fluctuations in the midnight sector, the MLT of each sta-
tion was encoded using Sine and Cosine. Lastly, the choice of
keeping IMF BZ as a separate component was to accommodate
magnetic reconnection events which are known to be correlated
to geomagnetic storms.

Results
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Figure 1:Graphic showing the performance of the coupled model for each sta-
tion. The left column depicts the Sep-07-2015 storm time prediction of each
station while the right columns shows density plots of predicted vs observed
values for the year of 2015.The dotted red line corresponds to a perfect pre-
diction while the solid red line is the line of best fit between the predicted
and observed values with its Pearson correlation coefficient provided in the
legend.

d|BN |/dt [nT/min] |BN | [nT]
Threshold 18 42 66 90 14.4 41.6 75.3 427.0
FYU LSTM 0.35 0.28 0.23 0.18 0.48 0.61 0.63 0.58

FYU LSTM (storm) 0.29 0.24 0.26 0.12 0.53 0.70 0.68 0.72
KAV LSTM 0.35 0.29 0.25 0.20 0.58 0.68 0.66 0.50

KAV LSTM (storm) 0.27 0.37 0.23 0.20 0.43 0.54 0.54 0.65
PKR LSTM 0.36 0.26 0.15 0.10 0.39 0.58 0.63 0.47

PKR LSTM (storm) 0.29 0.25 0.27 0.26 0.37 0.76 0.71 0.61
CMO LSTM 0.41 0.31 0.25 0.20 0.68 0.75 0.73 0.60

CMO LSTM (storm) 0.36 0.29 0.28 0.34 0.67 0.74 0.75 0.65
Model Polarity

FYU KAV PKR CMO
Polarity 0.93 0.90 0.94 0.91

dBN/dt [nT/min] BN [nT]
Threshold 18 42 66 90 14.4 41.6 75.3 427.0

Coupled (FYU) 0.35 0.29 0.23 0.18 0.48 0.61 0.63 0.58
Coupled (FYU) (storm) 0.43 0.35 0.36 0.19 0.61 0.78 0.75 0.72

Coupled (KAV) 0.35 0.29 0.25 0.20 0.58 0.67 0.66 0.50
Coupled (KAV) (storm) 0.37 0.41 0.33 0.28 0.58 0.67 0.61 0.66

Coupled (PKR) 0.32 0.23 0.19 0.15 0.39 0.58 0.63 0.47
Coupled (PKR) (storm) 0.38 0.31 0.36 0.25 0.29 0.81 0.77 0.62

Coupled (CMO) 0.44 0.36 0.30 0.25 0.68 0.75 0.73 0.60
Coupled (CMO) (storm) 0.45 0.46 0.41 0.37 0.77 0.81 0.80 0.67
Table 1:HSS of trained Alaska stations for magnitude |BN |, polarity, and
coupled models. Scores are evaluated minute by minute across the year of
2015 and for the 09/07/2015 storm. Polarity has been encoded into a value
of 0 (-) or 1 (+) and the HSS corresponds to accurately assessing a 1.

Discussion

We found that the best configuration when training LSTM to
predict the geomagnetic field was including last known d|BN |/dt
values and training for the absolute value of the field. LSTM is
generally trained with the output variable as an input parameter
in the dataset, however in testing this results in a function B(t)
= B(t-1) as the training converges on the previous geomagnetic
field value as the most significant. Further, the original models
are trained for |BN | as this provided the best performance at
the cost of sign information, which is a necessary component for
ionospheric current modeling. To retain this information, a sec-
ondary so-called "Polarity" model is trained for each station to
predict an encoded sign value. The polarity models show promis-
ing results with average HSS of 0.92 as seen in Table 1. Further,
we can see an increase in HSS within the dBN/dt threshold scores
when comparing the original LSTM models predicting |BN | to
the coupled model predicting BN . The polarity models are adept
at persistent positive and negative values, but generally miss a
switch in sign by 1 minute. This can be seen within the den-
sity plots of Figure 1 where the second and fourth quadrants of
the plot show where the coupled model occasionally predicts the
wrong sign. In testing this usually correlates to quiet time where
the geomagnetic field is fluctuating near 0 nT. As seen in the
storm time prediction plots within Figure 1, the polarity model
properly calculates the persistent negative enhancement for each
station. Within the KAV prediction we can see the model also
captures the brief positive fluctuations from the observed dataset
around 1500-1800 UTC. While the majority of false predictions
occur during quiet time, the storm prediction from CMO shows
that in the right conditions the polarity model will provide a false
sign swap during a sustained enhancement. There is concern that
the coupled model will predict unexpectedly large dBN/dt in this
case, however this potential is currently minimized by the base
|BN | model generally underpredicting the magnitude, leading to
overall lower values should a false sign switch occur during peri-
ods of large |BN | enhancements.

Summary

GICs are a destructive phenomenon that occur during periods
of large geomagnetic field fluctuations. In an effort to predict
when these extreme fluctuations will happen, an LSTM neu-
ral network was trained off of IMF, solar wind, and ground
geomagnetic field data. The trained models showed better
performance with d|BN |/dt as in input parameter, bringing
a strong significance to global real-time magnetometer data.
Further, the models performed best when training with ab-
solute values of the geomagnetic field, leading to a coupled
model technique to retrieve the lost sign information. This
study aims to find the best performing LSTM and polarity
configuration for the values predicted for ionospheric current
modeling.


