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• Understanding the role the plasmoid instability plays in reconnection in 

Earth’s magnetotail is key to understanding the connection between the 

microscale and macroscale physics 

• Available in-situ data of magnetotail reconnection has fundamental 

limitations to its interpretation 

• We are developing an algorithm to aid plasmoid detection in magnetotail 

reconnection data 

• The algorithm is currently low-precision due to class imbalance, so we 

are currently working on improving performance 

distant 
neutral line 

large-scale plasmoid near Earth 
neutral line 

Small-scale 
plasmoids? 

• Near/mid-tail (10-40 Re)  

reconnection tends to be bursty and 

associated with dipolarizations 

during substorms 

• Can have finite guide field 

• Internal magnetosphere dynamics 

are thought to play a large part in 

the onset and progression 

• Not simple driven reconnection 

like the slow far-tail reconnection 

 

Figure adapted from Eastwood et al. 2017 “The Scientific Foundations of Forecasting 

Magnetospheric Space Weather” 

 

• The development of many plasmoids would 

significantly impact reconnection dynamics and 

energization efficiency 

• Multiple observations of small-scale near-tail 

plasmoids have been made (e.g. Chen et al. 2008, 

Sun et al. 2019) 

• Understanding the role of plasmoids requres a 

comprehensive understanding of the entire near-tail 

reconnection region 

Example magnetotail plasmoid magnetic signature with 

characteristic bipolar signature in BN (B component normal 

to current sheet) from Sun et al. 2019  

• Spacecraft is effectively one 

point in space 

• Spacecraft moving through 

evolving 3D structure gets a 1D 

picture of the 4D spacetime 

• Special techniques must be used 

to draw robust physics 

conclusions from this limited 

data 

A ML algorithm can: 

• Be nuanced like identifying by eye 

• Be quick like other algorithms 

• Learn to detect non-ideal plasmoids 

Proof of concept, existing similar work:  

• classification of reconnection in Saturn’s 

magnetotail using Cassini magnetometer 

data (Garton et al. 2021) 

• Effective statistical survey of many 

reconnection regions 

• Model had good performance even with just 

magnetometer data 
Distribution of reconnection events detected by Garton et al. 

(2021) using an Artificial Neural Network 

https://doi.org/10.1029/2021JA029361  

Example of random spacecraft trajectories taken 

through a 2D reconnection simulation plotted over 

magnetic flux contours 

 
Simulation details: 

Code : VPIC 

Size : 2000 x 250 de (400 x 50 di) 

Resolution :  8880 x 1110 

Mass ratio : 25 

Upstream beta : 0.01 

Initial conditions : antiparallel collisionless harris 

current sheet (no tail configuration) 

 

Contact kbergste@pppl.gov with methodology 

questions 
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z de 

How to train a model to detect structures in space data 

which we cannot already detect? 

 

Idea: use faux spacecraft trajectories through a simulation 

to train a Convolutional Neural Network-based model to 

detect plasmoids in the magnetotail 

• CNNs are often used for object detection and classification 

problems 

• Simulations (especially 2D) are inexpensive and the state of 

the entire plasma is known, establishing a rigorous ground 

truth 

• Parameters and initial conditions can be changed to create 

examples of reconnection in varying tail conditions 

Potential concern: the concept of  “garbage in, 

garbage out” 

• The quality of results is directly dependent on 

quality of the training data sample 

• Good performance requires a lot of training 

data 

• Are 2D simulations sufficient for a 3D reality? 

We plan to find out. 
Example of 3D turbulent reconnection from Daughton et al. 

(2011) 

Would an algorithm trained on 2D cases be able to detect 

those secondary flux ropes? 

• 1D CNN 

• Binary classifier- point is within a 

plasmoid or it isn’t 

• Model inputs are 1d segments of 

magnetic field, velocity, and 

current data 

• The prediction is done for a 

central fraction of each 

segment 

• Convolution and pooling is done 

to each input separately and then 

together 

• Cross-entropy loss 

Model details: 
Learning rate : ~0.009 
# convolutional filters : 16 
Convolutional kernel size : 3 
Pooling size : 2 
# epochs : 10 
Samples per category after 
undersampling: [96112, 10140] 
Contact kbergste@pppl.gov with 
methodology questions 

PIC simulations were performed using a GPU-compatible version of VPIC https://github.com/lanl/vpic 
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Machine learning work was done using tools from Tensorflow, scikit-learn, and Optuna 
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Accuracy: the fraction of all predictions which 

were correct 

Precision: fraction of the predicted positives which 

are truly positive 

Recall: fraction of the true positives which were 

predicted positive 

 

• Binary confusion matrices report the populations 

of true negatives (0,0), false positives (0,1) , 

false negatives (1,0), and true positives (1,1), 

and can be normalized by the predicted or true 

population 

• Recall is fairly good for both positives and 

negatives, but the overwhelming population of 

negatives means false positives overwhelm 

true positives 

 

recall, plasmoids 

precision, plasmoids 

• Interpretation of in-situ data of magnetotail reconnection is a methodological 

challenge 

• We are developing CNN-based algorithms to aid plasmoid detection in 

magnetotail reconnection data 

• Current algorithm has quantifiably low precision, which we need to improve 

before using the algorithm for physics 

 

Next steps to improve precision 

• Additional methods to combat class imbalance, e.g Synthetic Minority 

Oversampling TEchnique (SMOTE) 

• Changes to model structure such as hyperparameter optimization with Optuna  

• More or fewer convolutional layers, different learning rate (step size 

when minimizing the loss function), different convolutional kernel size, 

etc. 

• Development of a model using more data that would be available from a 

spacecraft (other components of v and j, density, electron distribution functions) 

• Multispacecraft-like implementation to make use of the four-point measurements 

from Cluster and MMS which provide estimates of spatial gradients 
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