

Predicting GNSS Disruptions using Machine Learning

ML in Heliophysics 2019

Laura A. Hayes

Kibrom Ebuy Abraha, Daniel Kumar, Karthik Venkataramani Asti Bhatt, Red Boumghar, Sylvester Kaczmarek, Ryan McGranaghan, Sean McGregor

NASA Frontier Development Lab

- 8 week applied research accelerator
- Public-Private Partnership
- Hosted at SETI Institute and NASA Ames

FRONTI

Machine Learning

Machine Learning

 Scientifically informed data-driven approach

Maximise Al/machine learning techniques to space science challenges

Space Weather

Dynamic solar activity impacts the Earths magnetic field and terrestrial environment

Space Weather Impacts

Global Navigational Satellite Systems (GNSS)

Global Navigational Satellite Systems (GNSS)

Global Navigational Satellite Systems (GNSS)

Need robust forecasting methods

Can we use data-driven machine learning techniques to forecast GNSS disruptions?

KBRWyle

Solar Data

Geomagnetic Data

Solar Data

Geomagnetic Data

Solar Data

lonosphere Data

Geomagnetic Data

Solar Data

Ionosphere Data

Machine Learning

High Latitude GNSS Stations

Canadian High Arctic Ionospheric Network (CHAIN) GPS receivers

High Latitude GNSS Stations

Canadian High Arctic Ionospheric Network (CHAIN) GPS receivers

High Latitude GNSS Stations

Canadian High Arctic Ionospheric Network (CHAIN) GPS receivers

Approach

Solar Activity

IMF By, Bz, clock angle

Solar wind density and velocity

X-ray flux

Proton flux

F10.7

Geomagnetic

AE, SymH, Kp

Solar wind magnetosphere coupling functions

Magnetometer Data

Ionosphere

GNSS Station location Information

GNSS Scintillation

Phase power spectral slope

TEC

dTEC

41 inputs > 100 feature engineering t + dt

Predicted GNSS scintillation

Build a predictive model for GNSS scintillation

Tools, Compute and Software Environment

Used

- Python open-source tools for data acquisition, wrangling and machine learning
- IBM POWER8 and POWER9 processors
 - Enabled the rapid exploration and testing of ML techniques

Created

- Python-based tools and cohesive data pipeline generated
- Machine learning framework on data pipeline

Classification baseline

Support Vector Machines

Localised models improved performance of model unto 40%

Feature engineering of inputs Time history and variance

Neural Network

Random Forest, Gradient Boosting

GNSS forecasts

- GPS disruptions forecasted
 1 hr in advance
- Train/validate on 2015, 2016 test on 2017
- Recall of 96%
- Improve forecasting metrics by 70%

Model : Neural Network with feature engineered inputs

https://gitlab.com/frontierdevelopmentlab/space-weather/SkyLab-X

Outcomes

- Developed a ML framework for predicting GPS disruptions.
- Proof of concept for machine learning applications for forecasting
- ML/Data shows localized nature of scintillation.
- +70% on baseline forecasting metrics.

https://gitlab.com/frontierdevelopmentlab/space-weather/SkyLab-X

Looking to the Future

- Pipeline set up for further exploration
- FDL 2019 included new parameters spatially located auroral mapping
- See Ryan McGranaghan talk and poster (B session)!