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Check out Lika’s talk on Wednesday!

NASA Frontier Development Lab S
« 8 week applied research accelerator
 Public-Private Partnership

 Hosted at SETI Institute and NASA Ames
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THIS 15 YOUR MACHINE [EARNING SYSTEM?

YOP! YOU POUR THE. DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSIERS ARE WRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

Machine Learning
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Machine Learning

- Scientifically informed
data-driven approach

Maximise Al/machine learning
techniques to space science
challenges



Space Weather

Dynamic solar activity
Impacts the Earths

N magnetic field and

~” terrestrial environment
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Global Navigational Satellite Systems (GNSS)

~ 20000 km in
altitude

lonosphere
100-1000 km
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Global Navigational Satellite Systems (GNSS)
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Global Navigational Satellite Systems GNSS)

Need robust
forecasting
methods
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oerce MeaTher f - Can we use data-driven
machine learning techniques
to forecast GNSS disruptions?
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High Latitude GNSS Stations

Canadian High Arctic lonospheric Network
(CHAIN) GPS receivers



High Latitude GNSS Stations

Phase scintillation azimuth-elevation diagram

Canadian High Arctic lonospheric Network
(CHAIN) GPS receivers
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Canadian High Arctic lonospheric Network
(CHAIN) GPS receivers




Approach

Solar Activity

Solalf wind density
-and velocity
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Geomagnetic

AE, SymH, Kp

Solar wind
magnetosphere
coupling functions

Magnetometer
Data
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GNSS Station location
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GNSS Scintillation

Phase power
spectral slope

TEC

dTEC

Build a predictive
model for GNSS
scintillation



Tools, Compute and Software Environment

Used

» Python open-source tools for data acquisition, wrangling

and machine learning
« IBM POWER8 and POWER9 processors
e Enabled the rapid exploration and testing of ML

techniques

Created

» Python-based tools and cohesive data pipeline generated

» Machine learning framework on data pipeline




Forecasting GPS disruptions

Classification
baseline

Support Vector
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Forecasting GPS disruptions

Classification
baseline

Localized models

Localised models improved
performance of model unto 40%



Forecasting GPS disruptions

Model input

Classification Localized models
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Feature engineering of inputs
Time history and variance




Forecasting GPS disruptions

Classification
baseline

Localized models

Model input

Scalable methods

Random Forest, Gradient Boosting

Neural Network




Forecasting GPS disruptions

Classification
baseline

Localized models Model input

Scalable methods

GPS disruptions
forecast




GNSS forecasts

- GPS disruptions
forecasted | pregicted
1 hr in advance

- Train/validate on
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- Recall of 96% | S

- Improve_ Model : Neural Network with feature engineered inputs
forecasting

metrics by 70%



https://gitlab.com/frontierdevelopmentlab/space-weather/SkyLab-X

Outcomes

- Developed a ML framework for predicting GPS
disruptions.

- Proof of concept for machine learning applications for
forecasting

- ML/Data shows localized nature of scintillation.

- +70% on baseline forecasting metrics.



https://gitlab.com/frontierdevelopmentlab/space-weather/SkyLab-X

Looking to the Future

- Pipeline set up for further exploration

- FDL 2019 included new parameters - spatially located
auroral mapping

- See Ryan McGranaghan talk and poster (B session)!



