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NASA Frontier Development Lab

• 8 week applied research accelerator
• Public-Private Partnership 
• Hosted at SETI Institute and NASA Ames

Check out Lika’s talk on Wednesday! 
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Machine Learning



Machine Learning

• Scientifically informed 
data-driven approach 

Maximise AI/machine learning 
techniques to space science 

challenges



Space Weather

Dynamic solar activity 
impacts the Earths 
magnetic field and 

terrestrial environment
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Global Navigational Satellite Systems (GNSS)
~ 20000 km in 

altitude

Ionosphere 
100-1000 km



Global Navigational Satellite Systems (GNSS)
Total electron 

content

Regions of 
increased density
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Global Navigational Satellite Systems (GNSS)

Degraded  
Performance

Complete loss 
of signal

??

Need robust 
forecasting 
methods



Can we use data-driven
machine learning techniques 
to forecast GNSS disruptions?
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Approach

Build a predictive 
model for GNSS 

scintillation

t t + dt
41 inputs

> 100 feature 
engineering

Predicted 
GNSS

 scintillation



Tools, Compute and Software Environment

• Python open-source tools for data acquisition, wrangling 

and machine learning 

• IBM POWER8 and POWER9 processors  

• Enabled the rapid exploration and testing of ML 

techniques

Used

Created

• Python-based tools and cohesive data pipeline generated  

• Machine learning framework on data pipeline
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Classification 
baseline

Support Vector 
Machines

Forecasting GPS disruptions



Localized modelsClassification 
baseline

Forecasting GPS disruptions

Localised models improved 
performance of model unto 40%
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Localized models Model inputClassification 
baseline

Forecasting GPS disruptions

Feature engineering of inputs
Time history and variance
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Localized models Model input

Scalable methods

Classification 
baseline

Forecasting GPS disruptions

Random Forest, Gradient Boosting
Neural Network
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Localized models Model input

Scalable methods

Classification 
baseline

Forecasting GPS disruptions

GPS disruptions 
forecast



GNSS forecasts

- GPS disruptions 
forecasted  
1 hr in advance 

- Train/validate on 
2015, 2016 test 
on 2017 

- Recall of 96% 

- Improve 
forecasting  
metrics by 70%   

Model : Neural Network with feature engineered inputs



Outcomes

- Developed a ML framework for predicting GPS 
disruptions.

- Proof of concept for machine learning applications for 
forecasting

- ML/Data shows localized nature of scintillation.

- +70% on baseline forecasting metrics.
 

https://gitlab.com/frontierdevelopmentlab/space-weather/SkyLab-X



Looking to the Future

- Pipeline set up for further exploration 

- FDL 2019 included new parameters - spatially located 
auroral mapping 

- See Ryan McGranaghan talk and poster (B session)!

https://gitlab.com/frontierdevelopmentlab/space-weather/SkyLab-X


