A machine learning approach to solar wind speed forecasting from solar images

Joint project with CWI (https ://projects.cwi.nl/mlspaceweather/)

- Mandar Chandorkar (Phd, CWI) \longrightarrow More details in poster
- Mhamed Hajaiej (Md, École Polytechnique)
- Enrico Camporeale (CIRES, University of Colorado)
- Cyril Furtlehner (INRIA, LRI, Université Paris-Sud)
- Bala Poduval (University of New Hampshire)
- Michèle Sebag (CNRS, LRI, Université Paris-Sud)

Overview

- Forecasting solar wind speed at L_1 from solar/heliospheric data : a complex regression problem.
- Feature extraction from input data : deep auto-encoders.
- Dynamic time lag regression problem : a Bayesian approach.
- Medium scale experiments and perspectives.

Forecasting the solar wind speed recorded at L1 from solar/heliospheric observations.

Complex regression problem in two respects :

 (i) Badly conditioned input-output problem : Large dimension of input signal : full scale images d = 512² × #channels Scalar output (SW speed).

 \rightarrow Dilution of the cause in the input signal (bad SNR).

Input data consists of various solar images channels : different wavelengths, magnetograms, LASCO images of CME.

Forecasting the solar wind speed recorded at L1 from solar/heliospheric observations.

Complex regression problem in two respects :

- (i) Badly conditioned input-output problem : Large dimension of input signal : full scale images $d = 512^2 \times #channels$ Scalar output (SW speed).
 - \longrightarrow Dilution of the cause in the input signal (bad SNR).
- (ii) stochastic non-constant time lag in a range of 1 to 5 days : yet another factor of 10 to 100 in the input signal.

Forecasting the solar wind speed recorded at L1 from solar/heliospheric observations.

Complex regression problem in two respects :

- (i) Badly conditioned input-output problem : Large dimension of input signal : full scale images d = 512² × #channels Scalar output (SW speed).
 - \longrightarrow Dilution of the cause in the input signal (bad SNR).
- (ii) stochastic non-constant time lag in a range of 1 to 5 days : yet another factor of 10 to 100 in the input signal.
- \longrightarrow Brute force model might have little chance to succeed.

Feature extraction from input data : deep auto-encoders

Is it possible to compress the source and how much?

Non-supervised approach with deep auto-encoder (AE), variational auto-encoder (VAE) Risk : loosing the relevant information w.r.t. the target output (solar wind speed) To be considered as a pre-training step.

Feature extraction from input data : deep auto-encoders

Convolution network based auto-encoders

Loss function : reweighted pixel values ($y_i \in [0, 1]$) distance

$$\mathcal{L}(\mathbf{y}^{\text{in}}, \mathbf{y}^{\text{out}}) = \sum_{i \in Pixels} \frac{(y_i^{\text{in}} - y_i^{\text{out}})^2}{(y_i^{\text{in}} + \epsilon)^{\alpha}} + \frac{(y_i^{\text{in}} - y_i^{\text{out}})^2}{(1 - y_i^{\text{in}} + \epsilon)^{\alpha}}$$

Feature extraction from input data : deep auto-encoders

Dimensional reduction of magnetograms

Example 1 :

Convolution network + PCA : $512^2 \longrightarrow 512$

Dimensional reduction of magnetograms

Example 2 :

Dimensional reduction of magnetograms

Visual comparison :

Solar wind first prediction Test

Input : sequences of magnetogram's (SOHO) AE features + LASCO coronagraph(NOAA) for $[t_0 - 4 \text{days}, t_0]$ Output : Solar wind at L_1 and $t_0 + 1 \text{day}$ (OMNI)

	Correlation	RMSE (kms^{-1})
Random predictor	0	165
Mean predictor		139
Magnetogram AE	0.05	193
Halo CME	0.14	—
Magnetogram Sequence AE	0.236	121
Magn. Seq. $AE + Halo CME$	0.335	120

Goal : jointly infer the time lag and predict the solar wind speed at L_1

Motivation :

- reducing the dimension of the input signal
- increasing model's interpretability

Remark : the time-lag plays the role of a latent variable (never observed)

Barely discussed problem in ML.

Available methods have too restrictive hypothesis

- linear methods are not adapted.
- Dynamic time warping (DTW), assume monotonicity, one to one cause-effect mapping

Our proposal : a Bayesian combination of experts.

Deterministic formulation of the problem :

$$y(t + \tau(t)) = f[x(t)]$$
$$\tau(t) = g[x(t)]$$

with

$$f: \mathcal{X} \to \mathbb{R}, \quad \text{and} \quad g: \mathcal{X} \to \mathbb{R}^+,$$

- $x(t) \in \mathbb{R}^d$, $d \gg 1$, input data containing the hidden cause
- $y(t) \in \mathbb{R}$ scalar, the effect
- $\tau(t) \in \mathbb{R}^+$, the time-lag between cause and effect

Underlying assumptions :

- both effect and time-lag are caused solely by x(t).
- τ is possibly many to one, aggregation of causes to be specified later.

Probabilistic relaxation : a Bayesian combination of experts Discretization of the problem : time $t \in \Omega$ is now discreet and

- $\{dt_i, i \in \mathcal{T}\}$: set of possible time-lag
- (x_t, \mathbf{y}_t) : input-output pairs with $\mathbf{y}_t = \{y_{t+dt_i}, i \in \mathcal{T}\}$

Assume a given set of predictors $\{\hat{y}_i(x), i \in \mathcal{T}\}$ for \mathbf{y}_t given $x_t = x$. Define a set $\{\tau_i(x), i \in \mathcal{T}\} \in \{0, 1\}^{|\mathcal{T}|}$ of stochastic binary variables :

$$\tau_i(x_t) = (y_{t+dt_i} \text{ is caused by } x_t) \in \{0, 1\}.$$

Gaussian mixture :

$$P[\mathbf{y}_t|x_t = x] = \sum_{\tau} \hat{p}(\tau_1, \dots, \tau_n | x) \, \mathcal{N}(\hat{\mathbf{y}}(x), \sigma(\tau))$$

Cyril Furtlehner, INRIA

Possible effects \mathbf{y}_t

Cause x

time

time

Model specifications :

$$P[\mathbf{y}_t|x_t = x] = \sum_{\tau} \hat{p}(\tau_1, \dots, \tau_n | x) \prod_{i \in T} \mathcal{N}(\hat{y}_i(x), \sigma_i(\tau))$$

• $\hat{p}(\tau_1, \ldots, \tau_n | x)$: joint probability measure of time-lagged effects caused by x

Our present choice : $\sum_{i \in \mathcal{T}} \tau_i = 1$ one single effect per cause set of probability weights : $\{\hat{p}_i(x), i \in \mathcal{T}\}, \quad \hat{p}_i(x) = \hat{p}(t_{j \neq i}, \tau_i = 1).$ • Variance of predictors :

$$\sigma_i(\tau)^2 = \frac{\sigma^2}{1 + \alpha \tau_i} \qquad \text{with} \qquad \begin{cases} \sigma^2 : \text{ default variance of } y_{t+dt_i} - \hat{y}_i(x_t) \\ \alpha > 0 : \text{ reduced variance of the good predictor} \end{cases}$$

Parameters of the model :

Two sets of functions of the input x and two meta parameters have to be learned :

- The predictors $\hat{\mathbf{y}}(x) = \{\hat{y}_i(x), i \in \mathcal{T}\}$
- The probability weights $\hat{\mathbf{p}}(x) = \{\hat{p}_i(x), i \in \mathcal{T}\}$
- σ^2

• α

Learning criterion : The loss function is given by the

 $\mathcal{L}[\mathbf{x}, \mathbf{y} | \mathbf{\hat{y}}, \mathbf{\hat{p}}, \sigma, \alpha]$ Log likelihood of the data (\mathbf{x}, \mathbf{y})

Learning strategy :

• \hat{y} and \hat{p} are modelled by means of coupled neural nets

• σ and α are optimized in an outer loop

Based on saddle point equations

$$\left(\frac{\partial \mathcal{L}}{\partial \hat{\mathbf{y}}(x)}, \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{p}}(x)}, \frac{\partial \mathcal{L}}{\partial \sigma}, \frac{\partial \mathcal{L}}{\partial \alpha}\right) = 0$$

Log likelihood :

- the data : $\{(x,\mathbf{y})\}_{\mathrm{data}}$
- the parameters : $\boldsymbol{\theta} = (\hat{\mathbf{y}}, \hat{\mathbf{p}}, \sigma, \alpha)$

Conditional probability of predictor $\hat{y}_i(x)$ being the right one given (x, \mathbf{y}) :

$$q_i(x, \mathbf{y}) \stackrel{\text{def}}{=} P(\tau_i = 1 | x, \mathbf{y}) = \frac{\hat{p}_i(x)}{Z(x, \mathbf{y} | \theta)} \ e^{-\frac{\alpha}{2\sigma^2} (y_i - \hat{y}_i(x))^2}$$

The log likelihood is given in closed form

$$\begin{split} \mathcal{L}\big[\{(x,\mathbf{y})\}_{\text{data}}|\theta] &= -\log(\frac{\sigma^{|T|}}{1+\alpha}) - \mathbb{E}_{\text{data}}\Big[\sum_{i\in T}\frac{1}{2\sigma^2}\big(y_i - \hat{y}_i(x)\big)^2 - \log\big(Z(x,\mathbf{y}|\theta)\big)\Big],\\ \text{with} \qquad Z(x,\mathbf{y}|\theta) &= \sum_{i\in \mathcal{T}}\hat{p}_i(x) \ e^{-\frac{\alpha}{2\sigma^2}(y_i - \hat{y}_i(x))^2} \end{split}$$

Saddle point equations :

Two statistical quantities :

$$\sigma_0^2 = \frac{1}{|T|} \mathbb{E}_{data} \Big(\sum_{i \in T} (y_i - \hat{y}_i(x))^2 \Big) \qquad C_1[\mathbf{q}] = \frac{1}{\sigma_0^2} \mathbb{E}_{data} \Big(\sum_{i \in T} q_i(x, \mathbf{y}) (y_i - \hat{y}_i(x))^2 \Big),$$

representing mean variance of predictor and relative error of model-weighted predictors The saddle point relations read :

$$\frac{\sigma^2}{\sigma_0^2} = \frac{|T| - C_1[\mathbf{q}]}{|T| - 1} \qquad \qquad \hat{y}_i(x) = \frac{\mathbb{E}_{data} \Big[y_i \big(1 + \alpha q_i(x, \mathbf{y}) \big) \Big| x \Big]}{\mathbb{E}_{data} \Big[1 + \alpha q_i(x, \mathbf{y}) \Big| x \Big]}$$
$$\alpha = \frac{|T|}{|T| - 1} \frac{1 - C_1[\mathbf{q}]}{C_1[\mathbf{q}]} \qquad \qquad \hat{p}_i(x) = \mathbb{E}_{data} \Big[q_i(x, \mathbf{y}) | x \Big].$$

Practical implementation :

Initialization of α and σ $it \leftarrow 0$; while it < max do while epoch do $\mid \theta \leftarrow Optimize(\mathcal{L}(\theta, \alpha, \sigma^2))$; end $\sigma^2 \leftarrow \sigma_0^2 \frac{|T| - C_1[\mathbf{q}]}{|T| - 1}$; $\alpha \leftarrow \frac{|T|}{|T| - 1} \frac{1 - C_1[\mathbf{q}]}{C_1[\mathbf{q}]}$; end Result: Model parameters $\theta = (\hat{\mathbf{y}}, \hat{\mathbf{p}})$, hyper-parameters α, σ^2

Predicted time-lag index :

$$\hat{I}(x) = \operatorname*{argmax}_{i} (\hat{p}_{i}(x))$$

Linear stability analysis :

There is a degenerate saddle point at $(\hat{p}_i(x) = 1/|T|, \alpha = 0, \sigma^2 = \sigma_0^2)$. Insufficiently specialized predictors \hat{y}_i may drive the system to this point.

The Hessian involves additional statistical observables $(q_i(x, \mathbf{y}) = P(\tau_i = 1 | x, \mathbf{y}))$:

$$C_2[\mathbf{q}] = \frac{1}{\sigma_0^4} \mathbb{E}_{data} \Big[\sum_{i \in T} q_i(x, \mathbf{y}) \Big(\Delta y_i^2(x) - \sum_{j \in T} q_j(x, \mathbf{y}) \Delta y_j^2(x) \Big)^2 \Big],$$

mean diversity of predictors

$$u_i[x,\mathbf{q}] = \frac{1}{\sigma_0^2} \mathbb{E}_{data} \Big[q_i(x,\mathbf{y}) \big(\Delta y_i^2(x) - \sum_{j \in T} q_j(x,\mathbf{y}) \Delta y_j^2(x) \big) \Big| x \Big],$$

individual relative error

Linear stability analysis :

Partial stability condition (at frozen $\hat{\mathbf{p}})$:

$$C_2[\mathbf{q}] < 2C_1^2[\mathbf{q}] + \mathcal{O}\left(\frac{1}{|T|}\right).$$

Main instability at the degenerate fixed point :

$$d\hat{\mathbf{p}}(x) \propto -|\mathbf{u}(x)|^2 \mathbf{u}(x)$$

rewards predictors with lowest errors by increasing their weights drives the system toward other solutions, like solutions of the form :

$$\hat{p}_i(x) = \delta_{iI(x)},$$

Note : Consistency between highest log likelihood and \mathcal{L}_2 loss optimality.

Synthetic data : Constant acceleration model

• input data : $x_t \in \mathbb{R}^{10}$ obeying *Stochastic Langevin Dynamics* ;

a

$$x_{t+1} = (1 - \eta)x_t + \mathcal{N}(0, a^2)$$
 $(\eta = 0.02, a^2 = 0.7)$

• time-lag : width of the time lag interval |T| = 20.

$$v_t = k||x_t||^2 + c \qquad (k = 5, c = 100)$$

$$\tau(x_t) = \frac{\sqrt{v_t^2 + 2ad} - v}{c}, \qquad (a = 5, d = 1000)$$

• output data :
$$y_t \in \mathbb{R}^+$$
 function of the norm x_t :

$$y_{t+\tau(x_t)} = k||x_t||^2 + c + a\tau(x_t).$$

Synthetic data :

Solar wind prediction at L_1 , > 2 days ahead :

• Input data at t_0 in \mathbb{R}^{375} thanks to various sources (GONG, OMNI) :

$$x_t = \left(\log(\mathbf{f}_S), \mathbf{B}_{cp}, v_{27}, SSN, F10.7\right) \in \mathbb{R}^{180} \times \mathbb{R}^{180} \times \mathbb{R}^{|T|} \times \mathbb{R}^+ \times \mathbb{R}^+$$

Corresponding to Flux tube expansion from CSSS model, radial magnetic fiels strength, recorded solar speed wind 27 days prior, sun spot number, measured radio flux

- Output data \mathbf{y}_t : solar wind speed rank $(t_0 + 2days, t_0 + 5days)$ with time-lag discretization : |T| = 12.
- Data : 9 well separated Carrington rotations
- Cross validated experiments : 8 CR for learning +1 CR for testing done 9 times.

Flux tube expansion from CSSS model (Zhao & Hoeksema,1995, Poduval & Zhao 2014; Poduval 2016)

$$\text{FTE}(\Phi) = \frac{R_{\text{phot}}^2 B_{\text{phot}}}{R_{\text{cp}}^2 B_{\text{cp}}} \in \mathbb{R}^{180}$$

with Φ the Carrington longitude.

$$R_{\rm cp} \simeq 2.5 \ R_{\rm sun}$$

based on photospheric synoptic maps (source GONG)

Solar wind prediction at L_1 , > 2 days ahead :

	Pearson Corr.	Rank Corr.	$MAE(kms^{-1})$	$RMSE(\mathrm{kms}^{-1})$
Fixed TL predictor	0.41	0.034	66.44	84.53
Random TL predictor	0.59	0.51	58.15	76.46
DTLR predictor	0.61	0.52	56.0	73.0

Model	M.A.E	R.M.S.E
Ensemble Median (WSA, Reiss et. al, 2019)	62.24	74.86
Persistence (4 days)	130.48	161.99
Persistence (27 days)	66.54	78.86
Fixed Lag Baseline	67.33	80.39
DTLR	54.41	65.18

Conclusion & Perspectives

- DTLR : an interesting ML problem, motivated by space weather forecasting but more general.

- Our Bayesian approach is based on a minimal model : possible refinements ahead.
- The neural net architecture is also minimal : should combine and pre-train with AE.
- more experiments needed, to extend and select the relevant input information

Consistency of the predictor :

Given learned predictors $\hat{y}_i(x)$ and weights $\hat{p}_i(x)$, the predicted value is

$$\hat{y}(x) = \hat{y}_{\hat{I}(x)}(x)$$

with $\hat{I}(x)$ the predicted time lag index.

Call
$$\mathcal{L}_2(\hat{y}, \hat{I}) = \mathbb{E}_{data} \left[\left(y_{\hat{I}(x)} - \hat{y}(x) \right)^2 \right]$$
 the "natural" loss.

Proposition 1. The optimal predictor w.r.t. \mathcal{L}_2 is given by

$$y^{\star}(x) = \hat{y}_{I^{\star}(x)}(x)$$
 with $I^{\star}(x) = \operatorname*{argmax}_{i}(\hat{p}_{i}(x)).$

Note : \mathcal{L}_2 is not usable for training (non-continuous) nor for validation (incomplete).