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Overview

Forecasting solar wind speed at L1 from solar/heliospheric data : a complex
regression problem.
Feature extraction from input data : deep auto-encoders.
Dynamic time lag regression problem : a Bayesian approach.
Medium scale experiments and perspectives.
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Problem statement

Forecasting the solar wind speed recorded at L1 from solar/heliospheric observations.

Complex regression problem in two respects :
(i) Badly conditioned input-output problem :
Large dimension of input signal : full scale images d = 5122 ×#channels
Scalar output (SW speed).
−→ Dilution of the cause in the input signal (bad SNR).
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Problem statement

Input data consists of various solar images channels :

different wavelengths, magnetograms, LASCO images of CME.
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Problem statement

Forecasting the solar wind speed recorded at L1 from solar/heliospheric observations.

Complex regression problem in two respects :
(i) Badly conditioned input-output problem :
Large dimension of input signal : full scale images d = 5122 ×#channels
Scalar output (SW speed).
−→ Dilution of the cause in the input signal (bad SNR).

(ii) stochastic non-constant time lag in a range of 1 to 5 days :
yet another factor of 10 to 100 in the input signal.
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Problem statement

Forecasting the solar wind speed recorded at L1 from solar/heliospheric observations.

Complex regression problem in two respects :
(i) Badly conditioned input-output problem :
Large dimension of input signal : full scale images d = 5122 ×#channels
Scalar output (SW speed).
−→ Dilution of the cause in the input signal (bad SNR).

(ii) stochastic non-constant time lag in a range of 1 to 5 days :
yet another factor of 10 to 100 in the input signal.

−→ Brute force model might have little chance to succeed.

Cyril Furtlehner, INRIA ML in Heliophysics, Amsterdam, 16-20/09/2019 6



Feature extraction from input data : deep auto-encoders

Is it possible to compress the source and how much ?

Non-supervised approach with deep auto-encoder (AE), variational auto-encoder (VAE)

Risk : loosing the relevant information w.r.t. the target output (solar wind speed)

To be considered as a pre-training step.
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Feature extraction from input data : deep auto-encoders

Convolution network based auto-encoders
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Feature extraction from input data : deep auto-encoders

Dimensional reduction of magnetograms

Example 1 :

Convolution network + PCA : 5122 −→ 512

0 1 2 5 6 10 300
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Dimensional reduction of magnetograms

Example 2 :

Variational autoencoder : 2562 −→ 90

0 1 80
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Dimensional reduction of magnetograms

Visual comparison :

Input image

Output image

Conv AE Conv AE

+

dense layer

Conv AE

+

PCA

VAE

(2562→ 90)

(5122→ 512)(2562→ 64)

(2562→ 512)
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Solar wind first prediction Test

Input : sequences of magnetogram’s (SOHO) AE features + LASCO corona-
graph(NOAA) for [t0 − 4days, t0]
Output : Solar wind at L1 and t0 + 1day (OMNI)

Random predictor

Mean predictor

Magnetogram AE

Halo CME

Magnetogram Sequence AE

Magn. Seq. AE + Halo CME

Correlation

165
139

193

−
121

120

0

−

0.335

0.236

0.14

0.05

RMSE (kms−1)
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Dynamic time lag regression

Goal : jointly infer the time lag and predict the solar wind speed at L1

Motivation :
reducing the dimension of the input signal
increasing model’s interpretability

Remark : the time-lag plays the role of a latent variable (never observed)

Barely discussed problem in ML.

Available methods have too restrictive hypothesis
linear methods are not adapted.
Dynamic time warping (DTW), assume monotonicity, one to one cause-effect
mapping

Our proposal : a Bayesian combination of experts.
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Dynamic time lag regression

Deterministic formulation of the problem :

y(t+ τ(t)) = f [x(t)]

τ(t) = g[x(t)]

with
f : X → R, and g : X → R+,

x(t) ∈ Rd, d� 1, input data containing the hidden cause
y(t) ∈ R scalar, the effect
τ(t) ∈ R+, the time-lag between cause and effect

Underlying assumptions :
both effect and time-lag are caused solely by x(t).
τ is possibly many to one, aggregation of causes to be specified later.
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Dynamic time lag regression

Probabilistic relaxation : a Bayesian combination of experts

Discretization of the problem : time t ∈ Ω is now discreet
and

{dti, i ∈ T } : set of possible time-lag
(xt,yt) : input-output pairs
with yt = {yt+dti, i ∈ T }

time

time

t

t+ dti

Possible effects yt

Cause xt

Assume a given set of predictors {ŷi(x), i ∈ T } for yt given xt = x. Define a set
{τi(x), i ∈ T } ∈ {0, 1}|T | of stochastic binary variables :

τi(xt) = (yt+dti is caused by xt) ∈ {0, 1}.

Gaussian mixture :

P
[
yt|xt = x

]
=
∑
τ

p̂
(
τ1, . . . , τn|x) N

(
ŷ(x), σ(τ)

)
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Dynamic time lag regression

Model specifications :

P
[
yt|xt = x

]
=
∑
τ

p̂
(
τ1, . . . , τn|x)

∏
i∈T

N
(
ŷi(x), σi(τ)

)
p̂
(
τ1, . . . , τn|x) : joint probability measure of time-lagged effects caused by x

Our present choice :
∑
i∈T

τi = 1 one single effect per cause

set of probability weights : {p̂i(x), i ∈ T }, p̂i(x) = p̂(tj 6=i, τi = 1).

Variance of predictors :

σi(τ)2 =
σ2

1 + ατi
with

{
σ2 : default variance of yt+dti − ŷi(xt)

α > 0 : reduced variance of the good predictor
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Dynamic time lag regression
Parameters of the model :
Two sets of functions of the input x and two meta parameters have to be learned :

The predictors ŷ(x) = {ŷi(x), i ∈ T }
The probability weights p̂(x) = {p̂i(x), i ∈ T }
σ2

α
Learning criterion : The loss function is given by the

L[x,y|ŷ, p̂, σ, α] Log likelihood of the data (x,y)

Learning strategy :
ŷ and p̂ are modelled by means of coupled neural nets
σ and α are optimized in an outer loop

Based on saddle point equations( ∂L
∂ŷ(x)

,
∂L
∂p̂(x)

,
∂L
∂σ
,
∂L
∂α

)
= 0
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Dynamic time lag regression

Log likelihood :

- the data : {(x,y)}data
- the parameters : θ = (ŷ, p̂, σ, α)

Conditional probability of predictor ŷi(x) being the right one given (x,y) :

qi(x,y)
def
= P (τi = 1|x,y) =

p̂i(x)

Z(x,y|θ)
e
− α

2σ2
(yi−ŷi(x))2

The log likelihood is given in closed form

L
[
{(x,y)}data|θ] = − log(

σ|T |

1 + α
)−Edata

[∑
i∈T

1

2σ2

(
yi−ŷi(x)

)2−log
(
Z(x,y|θ)

)]
,

with Z(x,y|θ) =
∑
i∈T

p̂i(x) e
− α

2σ2
(yi−ŷi(x))2
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Dynamic time lag regression

Saddle point equations :

Two statistical quantities :

σ2
0 =

1

|T |
Edata

(∑
i∈T

(yi− ŷi(x))2
)

C1[q] =
1

σ2
0

Edata
(∑
i∈T

qi(x,y)(yi− ŷi(x))2
)
,

representing mean variance of predictor and relative error of model-weighted predictors
The saddle point relations read :

σ2

σ2
0

=
|T | − C1[q]

|T | − 1
ŷi(x) =

Edata
[
yi
(
1 + αqi(x,y)

)∣∣∣x]
Edata

[
1 + αqi(x,y)

∣∣∣x]
α =

|T |
|T | − 1

1− C1[q]

C1[q]
p̂i(x) = Edata

[
qi(x,y)|x

]
.
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Dynamic time lag regression

Practical implementation :

Initialization of α and σ
it←− 0 ;
while it < max do

while epoch do
θ ←− Optimize(L(θ, α, σ2)) ;

end

σ2 ←− σ2
0
|T |−C1[q]
|T |−1 ;

α←− |T |
|T |−1

1−C1[q]
C1[q]

;

end
Result: Model parameters θ = (ŷ, p̂),

hyper-parameters α, σ2
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nh1

nv

hidden layers

soft max

fully connected

fully connected

2n

nh2

X (ŷ(x), Î(x))

ŷ

p̂

Predicted time-lag index :

Î(x) = argmax
i

(
p̂i(x)

)
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Dynamic time lag regression

Linear stability analysis :

There is a degenerate saddle point at (p̂i(x) = 1/|T |, α = 0, σ2 = σ2
0).

Insufficiently specialized predictors ŷi may drive the system to this point.

The Hessian involves additional statistical observables (qi(x,y) = P (τi = 1|x,y)) :

C2[q] =
1

σ4
0

Edata
[∑
i∈T

qi(x,y)
(

∆y2i (x)−
∑
j∈T

qj(x,y)∆y2j (x)
)2]

,

mean diversity of predictors

ui[x,q] =
1

σ2
0

Edata
[
qi(x,y)

(
∆y2i (x)−

∑
j∈T

qj(x,y)∆y2j (x)
)∣∣∣x],

individual relative error
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Dynamic time lag regression

Linear stability analysis :

Partial stability condition (at frozen p̂) :

C2[q] < 2C2
1 [q] +O

( 1

|T |
)
.

Main instability at the degenerate fixed point :

dp̂(x) ∝ −|u(x)|2u(x)

rewards predictors with lowest errors by increasing their weights
drives the system toward other solutions, like solutions of the form :

p̂i(x) = δiI(x),

Note : Consistency between highest log likelihood and L2 loss optimality.
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Experiments

Synthetic data :Constant acceleration model

input data : xt ∈ R10 obeying Stochastic Langevin Dynamics ;

xt+1 = (1− η)xt +N (0, a2) (η = 0.02, a2 = 0.7)

time-lag : width of the time lag interval |T | = 20.

vt = k||xt||2 + c (k = 5, c = 100)

τ(xt) =

√
v2t + 2ad− v

a
, (a = 5, d = 1000)

output data : yt ∈ R+ function of the norm xt :

yt+τ(xt) = k||xt||2 + c+ aτ(xt).
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Experiments

Synthetic data :
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Experiments

Solar wind prediction at L1, > 2 days ahead :

Input data at t0 in R375 thanks to various sources (GONG, OMNI) :

xt =
(
log(fS),Bcp, v27, SSN,F10.7

)
∈ R180 × R180 × R|T | × R+ × R+

Corresponding to Flux tube expansion from CSSS model,radial magnetic fiels
strength, recorded solar speed wind 27 days prior,sun spot number, measured
radio flux

Output data yt : solar wind speed rank (t0 + 2days, t0 + 5days) with time-lag
discretization : |T | = 12.
Data : 9 well separated Carrington rotations
Cross validated experiments : 8 CR for learning +1 CR for testing done 9 times.
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Experiments
Flux tube expansion from CSSS model (Zhao & Hoeksema,1995, Poduval & Zhao 2014 ; Poduval

2016)

FTE(Φ) =
R2

photBphot

R2
cpBcp

∈ R180

with Φ the Carrington longitude.

Rcp ' 2.5 Rsun

Rss ' 15 Rsun

FTE

Wang & Sheeley (1990)

speed kms−1

> 750

650− 750

450− 550

550− 650 8− 10

4.5− 8

< 4.5

10− 20

> 20< 450

based on photospheric synoptic maps (source GONG)
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Experiments

Solar wind prediction at L1, > 2 days ahead :
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m
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)

Pearson Corr. Rank Corr. MAE(kms−1) RMSE(kms−1)
Fixed TL predictor 0.41 0.034 66.44 84.53

Random TL predictor 0.59 0.51 58.15 76.46
DTLR predictor 0.61 0.52 56.0 73.0
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Observed (OMNI)
Predicted (2 days ahead)

Carrington Rotation 2077

Model M.A.E R.M.S.E
Ensemble Median (WSA, Reiss et. al, 2019) 62.24 74.86
Persistence (4 days) 130.48 161.99
Persistence (27 days) 66.54 78.86
Fixed Lag Baseline 67.33 80.39
DTLR 54.41 65.18
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Conclusion & Perspectives

- DTLR : an interesting ML problem, motivated by space weather forecasting but more
general.

- Our Bayesian approach is based on a minimal model : possible refinements ahead.

- The neural net architecture is also minimal : should combine and pre-train with AE.

- more experiments needed, to extend and select the relevant input information
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Dynamic time lag regression

Consistency of the predictor :

Given learned predictors ŷi(x) and weights p̂i(x), the predicted value is

ŷ(x) = ŷÎ(x)(x)

with Î(x) the predicted time lag index.

Call L2(ŷ, Î) = Edata
[(
yÎ(x) − ŷ(x)

)2]
the “natural” loss.

Proposition 1. The optimal predictor w.r.t. L2 is given by

y?(x) = ŷI?(x)(x) with I?(x) = argmax
i

(
p̂i(x)

)
.

Note : L2 is not usable for training (non-continuous) nor for validation (incomplete).
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