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Problem statement

—— Model output
+ Real data
' Confidence interval
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Standard Approach

* The golden standard approach to estimate uncertainties based
on a deterministic model is by running a

Monte Carlo ensemble

(e.g. by small perturbations of
Initial conditions)

* This has two problems:
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Standard Approach

* The golden standard approach to estimate uncertainties based
on a deterministic model is by running a

Monte Carlo ensemble

(e.g. by small perturbations of
Initial conditions)

* This has two problems:

- It requires many runs (expensive)

- It requires to know what is the
probability distribution of inputs

(as in the work of R. Sarma , Thursday morning)




Take home message

We have devised a method that:

- Estimates the uncertainties associated with single-point outputs generated

by a deterministic model, in terms of Gaussian distributions;

- Ensures the optimal trade-off between accuracy and reliability;

- Does not need to run ensembles. It costs as much as training a neural

network

— Code available: zenodo.1485608
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Key Points:

+ We introduce a new method to
estimate the uncertainties associated
with single-point outputs generated
by a deterministic model

« The method ensures a trade-off
between accuracy and reliability of
the generated probabilistic forecasts

« Computationally cheap model:
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Utilitarian Approach

Let us assume that for a single

. - . . —— Model output
(multidimensional) input x, our model

predicts an output y = f(x).

Blue line — Model output
Red line — Real (observed value)

Working hypothesis:

We want to use the model output as the
mean of a Gaussian distribution that is
interpreted as a probabilistic forecast.
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. - . . —— Model output
(multidimensional) input x, our model

predicts an output y = f(x).

Blue line — Model output
Red line — Real (observed value)

Working hypothesis:

We want to use the model output as the
mean of a Gaussian distribution that is
interpreted as a probabilistic forecast.

What is the optimal width of a
Gaussian forecast?



Continuous Rank Probability Score

What is the optimal width of a
Gaussian forecast?

“Optimal” with respect to what?

We use the CRPS as a score for
“accuracy”.

« CRPS is a generalization of
Brier score

[t has a simple graphical
Interpretation

« CRPS = 0 for perfect forecast




Continuous Rank Probability Score

CRPS is a generalization of
Brier score

It has a simple graphical T = T =i
interpretation L
CRPS = 0 for perfect forecast J

CRPS =

CDF Step function



Continuous Rank Probability Score

For a Gaussian distribution, CRPS has an analytical expression
which is a function of:

— Error €: difference between model output and observed value
- Standard deviation o

If we define the optimal ¢ the one that minimizes CRPS
we obtain a probabilistic forecast that is not RELIABLE




What is a probabilistic forecast anyway?

Risk Analysis, Vol. 25, No. 3, 2005 DOI: 10.1111/j.1539-6924.2005.00608.x

“A 30% Chance of Rain Tomorrow’’: How Does the Public TABLE 2. Responses to Q14a, the meaning of the forecast
Understand Probabilistic Weather Forecasts? “There is a 60% chance of rain for tomorrow” (N = 1330).

Percent of

Gerd Gigerenzer,'™ Ralph Hertwig,” Eva van den Broek,! Barbara Fasolo,! respondents
and Konstantinos V. Katsikopoulos!

It will rain tomorrow in 60% of the region. 16

It will rain tomorrow for 60% of the time. 10

It will rain on 60% of the days like tomorrow.* 19

60% of weather forecasters believe that it will 22
rain tomorrow.

I don’t know. 9

Other (please explain). 24

WEATHER AND FORECASTING

* Technically correct interpretation, according to how PoP fore-
casts are verified, as interpreted by Gigerenzer et al. (2005).
Communicating Uncertainty in Weather Forecasts: A Survey of the U.S. Public

REeEBECCA E. MoORsS, JULIE L. DEMUTH, AND JEFFREY K. LAZO

National Center for Atmospheric Research,* Boulder, Colorado




What is a probabilistic forecast
anyway?

“There is a 60% chance of rain tomorrow.” Which of the
options listed below do you think best describes what
the forecast means?

It will rain tomorrow in 60% of the region.

[t will rain tomorrow for 60% of the time.

It will rain on 60% of the days like tomorrow.
| A &Y 4V &V &V &YV &V & &

60% of weather forecasters/simulations believe that it will rain
tomorrow.

40% chance of sunshine.

| don't know.

TABLE 2. Responses to Q14a, the meaning of the forecast
“There is a 60% chance of rain for tomorrow” (N = 1330).

Percent of
respondents

It will rain tomorrow in 60% of the region. 16
It will rain tomorrow for 60% of the time. 10
It will rain on 60% of the days like tomorrow.* 19
60% of weather forecasters believe that it will

rain tomorrow.
I don’t know.
Other (please explain).

* Technically correct interpretation, according to how PoP fore-
casts are verified, as interpreted by Gigerenzer et al. (2005).




Reliability diagram

Reliability is the property of a
probabilistic model that measures its
statistical consistency with
observations.
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For example, for forecasts of
discrete events, the reliability
measures If an event occurs on
average with frequency p, when it
has been predicted to occur with
probability p.
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Reliability diagram

The values of o that minimize CRPS Reliability diagram
can be derived analytically: CRPS- 056
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The more we minimize CRPS,
the worse reliability we get.

I I 0.2 0.4 0.6
Mathemathal prOOf IS Predicted probability
straightforward.

See arXiv:1811.12692
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Reliability diagram

The values of o that minimize CRPS Reliability diagram

can be derived analytically:
Constant CRPS
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Reliability Score

We define an analytical Reliability Score (RS)

- It measures how far the distribution of standardized errors €/o Is from a
Standard Normal distribution (other definition of reliability)

" = Eiﬂﬁf’i]» (5)

where the standard deviations o; are determined by the input vector. If #(x) is not constant then this def-
inition acts to both standardize and transform the error distribution. While the forecast errors ¢; may not
be Gaussian, in the case of a normally distributed forecast we expect n calculated over a sample of N
prediction-observation pairs to follow a standard normal distribution with CDF ®(n) = %[erf{}r} +1). Hence,

we define the Reliability Score {_RS as

o0
RS = / |®(y) —C,,(ﬁy}]zd:»-‘. (6)
—3

where C,» is the empirical cumulative distribution of the standardized errors #, that is

N
. 1 , ;
C,(y) = N ZH (y—m)

i=1

with n, = (0 — u)/(V26,).



Two-objective cost function

This Is a two-objective optimization problem, because reliability
and accuracy are competing objectives.

We define the Accuracy-Reliability (AR) cost function:

AR = CRPS + 3 * RS

b

Accuracy Reliability

Accuracy and Reliability cannot both be minimized simultaneously
We have to find the best trade-off



The Method

Take a sample of N errors ¢ (difference
between model output and observed values)
and the corresponding model inputs x

We define as optimal standard deviation o the
one that optimizes the Accuracy-Reliability
cost function (that has an analytical
expression)

We also want to have a way of generating a
smooth function o(x) for any value of x

We use a neural network that takes x as input
and produces a(x) as output by minimizing
AR cost function.




Synthetic example

o y(z) ~ N(f(x),0(z))




DEN2D: model for plasmasphere
electron density

Estimates the electron (a) 2011-02-03 12:00:00 (b) 2011-02-04 18:00:00 (c) 2011-02-05 00:00:00
density based on history

of geomagnetic indexes
using a Neural Network.

X. Chu et al' 'JGR (2017) (d) 2011-02-06 12:00:00 (e} 2011-02-07 12:00:00 (f) 2011-02-08 12:00:00

Figure 6. A series of panels showing the neural network reconstruction of the global plasma density in the equatorial
plane as a function of L and MLT at the following times: (a) 2011-02-03/12:00:00 (quiet time before the storm); (b) 2011-
02-04/18:00:00 (during the main phase); (c) 2011-02-05/00:00:00 (at the minimum of SYM-H); (d) 2011-02-06/12:00:00,
(e) 2011-02-07/12:00:00, and (f) 2011-02-08/12:00:00 (recovery phase). The colorbar represents the logarithm of the
electron number density in el/cc.




DEN2D: model for plasmasphere
electron density

2011-02-03 12:00 2011-02-04 18:00 2011-02-05 00:00

Estimates the electron

density based on history
of geomagnetic indexes
using a Neural Network.

X. Chu et al. JGR (2017)

Estimate of the standard deviation (uncertainty) with
the AR method



Machine Learning benchmark

Table 1: Comparison between different methods on several multidimensional dataset.

Method NLPD KM RECAL AR NLPD KM RECAL AR NLPD KM RECAL
Score NLPD | CRPS | Cal. err. (%)

Dataset Size

10.5 8.7

6.0 19.7
9.6 284
2.8 247
6.6 45

3.1 15.8
7.4 8.3
11.9 11.3
16.2 27.8

Boston Housing 506
Concrete 1,030
Energy 768
Kin&nm 8,192
Naval propulsion 11,934
Power plant 9,568
Protein 45,730
Wine 1,599
Yacht 308

Lesson learned from ML community: new methods are always tested against standard
benchmarks and compared with ‘baseline’ methods
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