On the generation of probabilistic forecasts from deterministic models

Enrico Camporeale

CIRES / CU Boulder & NOAA Space Weather Prediction Center Center for Mathematics and Computer Science (CWI), Amsterdam, Netherlands

Collaborators: Xiangning Chu (U. Colorado), Oleksiy Agapitov (SSL, Berkeley) Jacob Bortnik (UCLA), Algo Care' (U. Brescia, Italy)

Problem statement

Problem statement

Set of Inputs, Parameters, etc.

> Deterministic model + Real Data

Uncertainties:

- Epistemic (do not know the parameters exactly)
- Aleatoric (physics that is not in the model)
- Algorithmic (numerical errors)

Problem statement

Standard Approach

• The golden standard approach to estimate uncertainties based on a deterministic model is by running a

Monte Carlo ensemble (e.g. by small perturbations of initial conditions)

• This has two problems:

Standard Approach

• The golden standard approach to estimate uncertainties based on a deterministic model is by running a

Monte Carlo ensemble (e.g. by small perturbations of initial conditions)

- This has two problems:
 - It requires many runs (expensive)

Standard Approach

• The golden standard approach to estimate uncertainties based on a deterministic model is by running a

Monte Carlo ensemble (e.g. by small perturbations of initial conditions)

- This has two problems:
 - It requires many runs (expensive)
 - It requires to know what is the probability distribution of inputs (as in the work of R. Sarma , Thursday morning)

Take home message

We have devised a method that:

- Estimates the uncertainties associated with single-point outputs generated by a deterministic model, in terms of Gaussian distributions;
- Ensures the optimal trade-off between accuracy and reliability;
- Does not need to run ensembles. It costs as much as training a neural network
- <u>Code available</u>: zenodo.1485608

Space Weather

RESEARCH ARTICLE

10.1029/2018SW002026

Key Points:

- We introduce a new method to estimate the uncertainties associated with single-point outputs generated by a deterministic model
- The method ensures a trade-off between accuracy and reliability of the generated probabilistic forecasts
 Computationally sharp model:
- Computationally cheap model:

On the Generation of Probabilistic Forecasts From Deterministic Models

E. Camporeale^{1,2}, X. Chu³, O. V. Agapitov⁴, and J. Bortnik⁵

¹Center for Mathematics and Computer Science (CWI), Amsterdam, The Netherlands, ²Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA, ³Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA, ⁴Space Sciences Laboratory, University of California Berkeley, Berkeley, CA, USA, ⁵Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, USA

Utilitarian Approach

Let us assume that for a single (multidimensional) input \mathbf{x} , our model predicts an output y = f(x).

Blue line \rightarrow Model output Red line \rightarrow Real (observed value)

Working hypothesis:

We want to use the model output as the mean of a Gaussian distribution that is interpreted as a probabilistic forecast.

Utilitarian Approach

Let us assume that for a single (multidimensional) input \mathbf{x} , our model predicts an output y = f(x).

Blue line \rightarrow Model output Red line \rightarrow Real (observed value)

Working hypothesis:

We want to use the model output as the mean of a Gaussian distribution that is interpreted as a probabilistic forecast.

What is the optimal width of a Gaussian forecast?

Continuous Rank Probability Score

What is the optimal width of a Gaussian forecast?

"Optimal" with respect to what?

We use the CRPS as a score for "accuracy".

- CRPS is a generalization of Brier score
- It has a simple graphical interpretation
- CRPS = 0 for perfect forecast

Continuous Rank Probability Score

- CRPS is a generalization of Brier score
- It has a simple graphical interpretation
- **CRPS = 0** for perfect forecast

• CRPS =
$$\int (C(y) - H(\hat{y}))^2 dy$$

CDF Step function

Continuous Rank Probability Score

For a Gaussian distribution, CRPS has an analytical expression which is a function of:

- Error ε: difference between model output and observed value
- Standard deviation σ

If we define the optimal σ the one that minimizes CRPS we obtain a probabilistic forecast that is not <u>RELIABLE</u>

What is a probabilistic forecast anyway?

Risk Analysis, Vol. 25, No. 3, 2005

DOI: 10.1111/j.1539-6924.2005.00608.x

"A 30% Chance of Rain Tomorrow": How Does the Public Understand Probabilistic Weather Forecasts?

Gerd Gigerenzer,^{1*} Ralph Hertwig,² Eva van den Broek,¹ Barbara Fasolo,¹ and Konstantinos V. Katsikopoulos¹

974

WEATHER AND FORECASTING

TABLE 2. Responses to Q14a, the meaning of the forecast "There is a 60% chance of rain for tomorrow" ($N = 1330$).								
	Percent of respondents							
It will rain tomorrow in 60% of the region.	16							
It will rain tomorrow for 60% of the time.	10							
It will rain on 60% of the days like tomorrow.*	19							
60% of weather forecasters believe that it will rain tomorrow.	22							
I don't know.	9							
Other (please explain).	24							

* Technically correct interpretation, according to how PoP forecasts are verified, as interpreted by Gigerenzer et al. (2005).

Communicating Uncertainty in Weather Forecasts: A Survey of the U.S. Public

REBECCA E. MORSS, JULIE L. DEMUTH, AND JEFFREY K. LAZO

National Center for Atmospheric Research,* Boulder, Colorado

What is a probabilistic forecast anyway?

"There is a 60% chance of rain tomorrow." Which of the options listed below do you think best describes what the forecast means?

It will rain tomorrow in 60% of the region.

13%

It will rain tomorrow for 60% of the time.

2%

It will rain on 60% of the days like tomorrow.

13%

60% of weather forecasters/simulations believe that it will rain tomorrow.

29%

40% chance of sunshine.

11%

I don't know.

• 4%

TABLE 2. Responses to Q14a, the meaning of the forecast "There is a 60% chance of rain for tomorrow" ($N = 1330$).								
	Percent of respondents							
It will rain tomorrow in 60% of the region.	16							
It will rain tomorrow for 60% of the time.	10							
It will rain on 60% of the days like tomorrow.*	19							
60% of weather forecasters believe that it will rain tomorrow.	22							
I don't know.	9							
Other (please explain).	24							

* Technically correct interpretation, according to how PoP forecasts are verified, as interpreted by Gigerenzer et al. (2005).

Reliability diagram

Reliability is the property of a probabilistic model that measures its statistical consistency with observations.

For example, for forecasts of discrete events, the reliability measures if an event occurs on average with frequency *p*, when it has been predicted to occur with probability *p*.

Reliability diagram

The values of σ that minimize CRPS can be derived analytically:

 $\sigma^2_{opt} \sim \epsilon^2$

The more we minimize CRPS, the worse reliability we get. Mathematical proof is straightforward. See arXiv:1811.12692

Reliability diagram

The values of σ that minimize CRPS can be derived analytically:

 $\sigma^2_{opt} \sim \epsilon^2$

A given value of CRPS is not informative on the reliability See <u>arXiv:1811.12692</u>

Reliability Score

We define an analytical Reliability Score (RS)

- It measures how far the distribution of standardized errors ϵ/σ is from a Standard Normal distribution (other definition of reliability)

$$\eta_i = \varepsilon_i / (\sqrt{2}\sigma_i), \tag{5}$$

where the standard deviations σ_i are determined by the input vector. If $\sigma(\mathbf{x})$ is not constant then this definition acts to both standardize and transform the error distribution. While the forecast errors ε_i may not be Gaussian, in the case of a normally distributed forecast we expect η calculated over a sample of N prediction-observation pairs to follow a standard normal distribution with CDF $\Phi(\eta) = \frac{1}{2}(\operatorname{erf}(\eta) + 1)$. Hence, we define the Reliability Score (RS) as

$$RS = \int_{-\infty}^{\infty} \left[\Phi(y) - C_{\eta}(y) \right]^2 dy,$$
(6)

where $C_n(y)$ is the empirical cumulative distribution of the standardized errors η , that is

$$C_{\eta}(y) = \frac{1}{N} \sum_{i=1}^{N} H(y - \eta_i)$$
(7)

with $\eta_i = (y_i^o - \mu_i)/(\sqrt{2}\sigma_i)$.

Two-objective cost function

- This is a two-objective optimization problem, because <u>reliability</u> and <u>accuracy</u> are competing objectives.
- We define the Accuracy-Reliability (AR) cost function:

$$AR = CRPS + \beta * RS$$

$$ACCUTACY \qquad ACCUTACY \qquad Contract Con$$

- Accuracy and Reliability cannot both be minimized simultaneously
- We have to find the best trade-off

The Method

- Take a sample of N errors ε (difference between model output and observed values) and the corresponding model inputs x
- We define as optimal standard deviation σ the one that optimizes the Accuracy-Reliability cost function (that has an analytical expression)
- We also want to have a way of generating a smooth function $\sigma(\mathbf{x})$ for any value of \mathbf{x}
- We use a neural network that takes x as input and produces σ(x) as output by minimizing AR cost function.

Synthetic example

DEN2D: model for plasmasphere electron density

Estimates the electron density based on history of geomagnetic indexes using a Neural Network.

X. Chu et al. JGR (2017)

Figure 6. A series of panels showing the neural network reconstruction of the global plasma density in the equatorial plane as a function of *L* and MLT at the following times: (a) 2011-02-03/12:00:00 (quiet time before the storm); (b) 2011-02-04/18:00:00 (during the main phase); (c) 2011-02-05/00:00:00 (at the minimum of *SYM-H*); (d) 2011-02-06/12:00:00, (e) 2011-02-07/12:00:00, and (f) 2011-02-08/12:00:00 (recovery phase). The colorbar represents the logarithm of the electron number density in el/cc.

DEN2D: model for plasmasphere electron density

Estimates the electron density based on history of geomagnetic indexes using a Neural Network.

X. Chu et al. *JGR* (2017)

Estimate of the standard deviation (uncertainty) with the AR method

Machine Learning benchmark

Table 1: Comparison between different methods on several multidimensional dataset.														
Method		NLPD	KM	RECAL	AR	NLPD	KM	RECAL	AR	NLPD	KM	RECAL	AR	
Score		NLPD				CRPS			Cal. err. (%)					
Dataset	Size	Dim.												
Boston Housing	506	13	0.64	1.42	0.52	0.90	0.27	0.54	0.25	0.83	10.5	8.7	14.4	8.3
Concrete	1,030	8	0.55	0.84	0.50	0.62	0.26	0.28	0.22	0.26	6.0	19.7	10.6	5.3
Energy	768	8	-0.31	-0.30	-0.12	-0.23	0.13	0.08	0.14	0.13	9.6	28.4	15.6	7.7
Kin8nm	8,192	8	0.32	0.85	0.57	0.31	0.2	0.24	0.24	0.2	2.8	24.7	6.7	2.0
Naval propulsion	11,934	15	-1.52	0.84	-0.82	-1.58	0.06	0.22	0.05	0.06	6.6	45	2.0	4.4
Power plant	9,568	4	0.04	0.25	0.28	0.04	0.15	0.15	0.15	0.15	3.1	15.8	2.6	2.6
Protein	45,730	9	1.11	1.18	1.18	1.18	0.43	0.43	0.45	0.42	7.4	8.3	1.0	7.4
Wine	1,599	11	1.24	1.16	1.20	1.29	0.47	0.43	0.46	0.47	11.9	11.3	5.5	10.6
Yacht	308	6	-0.44	0.39	-0.64	-0.25	0.12	0.20	0.09	0.12	16.2	27.8	20.4	12.0

Lesson learned from ML community: new methods are always tested against standard benchmarks and compared with 'baseline' methods

Take home message

We have devised a method that:

- Estimates the uncertainties associated with single-point outputs generated by a deterministic model, in terms of Gaussian distributions;
- Ensures the optimal trade-off between accuracy and reliability;
- Does not need to run ensembles. It costs as much as training a neural network
- <u>Code available</u>: zenodo.1485608

Space Weather

RESEARCH ARTICLE

10.1029/2018SW002026

Key Points:

- We introduce a new method to estimate the uncertainties associated with single-point outputs generated by a deterministic model
- The method ensures a trade-off between accuracy and reliability of the generated probabilistic forecasts
 Computationally sharp model:
- Computationally cheap model:

On the Generation of Probabilistic Forecasts From Deterministic Models

E. Camporeale^{1,2}, X. Chu³, O. V. Agapitov⁴, and J. Bortnik⁵

¹Center for Mathematics and Computer Science (CWI), Amsterdam, The Netherlands, ²Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA, ³Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA, ⁴Space Sciences Laboratory, University of California Berkeley, Berkeley, CA, USA, ⁵Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, USA