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Basics of Deep Learning

• Machine learning the process of using statistical techniques to give computers the ability to 
learn how to perform a specific task without being explicitly programmed 

• Deep neural networks are very good function approximators (Cybenko 1989, Lu et al. 2017) 
• processes that can be expressed by well-defined functions can be learned by a deep neural 

network

y ≈ f(x; {θ1, …, θn})
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Basics of Deep Learning

• The optimisation (training) takes place like a feedback loop similar to how the inversion 
process works
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The Problem with Inversions

• Inversions, however, are not well-defined functions 
• there are many combinations of atmospheric parameters that can produce the same line profiles

• there is information lost about the physics in the forward process
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Fixing the Problem

• How do we formulate the inverse process in such a way as to make it well-defined? 
• Introduce a latent space, z, which contains the information lost in the forward process
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Invertible Neural Networks (INNs)

y1 = x1 ⊗ exp (s2 (x2)) + t2 (x2)

y2 = x2 ⊗ exp (s1 (y1)) + t1 (y1)

x2 = (y2 − t1 (y1)) ⊘ exp (s1 (y1))
x1 = (y1 − t2 (x2)) ⊘ exp (s2 (x2))

See Dinh+ 2014, 2017 & Ardizzone+ 2018 for more details

•The layers we stack in INNs are known as affine-coupling blocks:
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Invertible Neural Networks (INNs)
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Training Data

• We use the F-CHROMA RADYN grid for training data 
• available here: https://star.pst.qub.ac.uk/wiki/doku.php/public/solarmodels/start


• Each simulation has 500 timesteps 
• All electron beams, range of cutoff energies: 10—25keV, range of spectral index: 3—8 and 

range of total energy deposited 
• We extract H𝞪 and Ca II 𝞴8542 line profiles as well as temperature, velocity and density 

profiles from each timestep of each simulation 
• This gives us >40000 pairs of spectral lines to learn our inversions from 
• Each pair of lines has corresponding atmospheric parameters 
• Using any less than 2 lines doesn’t work
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Validation Data

Forward Model Test Inversion Test
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Inversion of Real Data

• M1.1 flare SOL20140906T17:09 
    NOAA AR12157 
• Observed by SST/CRISP in H𝞪 

and Ca II 𝞴8542 
• Wavelength sampling: 15 points 

for H𝞪, 25 for Ca II

Figure: Observations in both 
wavelengths just after the flare onset. 
The circular point is a point on the 
flare ribbon.

The square point is a point off the 
flare ribbon.
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Single-pixel Inversions

Inversion of circular point Inversion of square point
See Osborne, Armstrong & Fletcher, 2019
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Whole Image Inversions

•Can do a whole image 
inversion in ~30 minutes (50 
nodes in each of the three 
atmospheric parameters, 
for ~100s of inversions on 
1k x 1k FOV) 

• Includes errors by 
calculating standard error 
on median solution 

•~1.5TB of inverted data 
(largest inversion ever 
done?) 

•Figure shows whole image 
inversions at heights where 
Ca II core forms in flares 
according to Kerr+ 2016

Armstrong, Osborne and Fletcher (in prep.)
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Future Work

• Analyse whole image inversions and see what our inversions say about the flaring chromosphere 

• Apply RADYNVERSION to 6 September 2017 X9.3 flare data (and see how much it breaks) 

• RADYNVERSION using a log 𝞽 grid is in prep for more insights into analysis 

• Add more spectral lines (Mg II, Ca II H&K,…) 

• Ideally add polarimetry once a forward model is available (see Osborne thesis) 

Useful links: 

•Paper: https://bit.ly/radynversion_paper 

•Code: https://bit.ly/radynversion_code
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