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Everyone	is	a	genius.	But	if	you	judge	a	fish	by	its	ability	to	climb	
a	tree,	it	will	live	its	whole	life	believing that	it	is	stupid.

- Albert	Einstein
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¤ To understand various solar-terrestrial interactions 
such as ring current decaying rate, plasmaspheric 
refilling as well as evaluate the permanent H 
escape.

[1]

Knowledge of exospheric H density is important but  
conventional estimation techniques are limited.

Image sources: [1] NASA Apollo 16 Mission, 
[2] https://commons.wikimedia.org/wiki/File:AncientMars.jpg , 

[3] http://pics-about-space.com/

[2], [3]

What did happen with the water?

¤ Atomic hydrogen (H) located at the outermost layer 
of the Earth’s atmosphere, resonantly scatters 
solar Lyman-alpha (121.6nm) radiation

Main	Goal:	Generate	a	remote	sensing	technique	to	estimate	the	Time-dependent,	
3-D	Hydrogen	density	distribution	in	the	exosphere.

What	is	the	topic	of	study?

Why	do	we	need	to	study	this	topic?

¤ Direct (in situ) sensing vs. remote sensing.
How	can	we	measure	the	H	density?



Hydrogen density estimation leverages the linearity of the 
optically thin emission model (>3RE)
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Example of technique feasibility using the NASA’s TWINS 
mission data (static reconstruction)

Source: TWINS SWRI website

Source: [Bailey et al., 2011]

¤ NASA’s Two Wide-angle Imaging Neutral-
atom Spectrometers (TWINS) mission 
provides the capability for 
stereoscopically imaging the 
magnetosphere.

¤ Each TWINS1/2 has two Lyman-alpha 
detectors (LAD), optical sensors.

¤ The selected data in this study is 
from 11 June 2008, in order to 
compare results with those 
reported by Bailey et al., [2011]

¤ Since it is quiet-time we assume 
a temporally-static H exosphere.



¤ Step 3: Rewrite      measurement 
of intensity as a linear equation.

y = Lx+w

Discretization of the exospheric volume of interest yields an 
algebraic linear system.

¤ Step 1: Discretize region into J
spherical voxels.

¤ Step 2: Project unknown density 
function onto    orthonormal basis 
functions.



¤ Observation matrix                    ,            
and is not full column rank (Voxels with 
out LOS through them).

¤ Regularization techniques are necessary 
to obtain a solution. 

¤ The selected regularization method is 
Regularized Robust Positive 
Estimation.

¤ Includes prior knowledge of physical 
structure of the Hydrogen density 
distributions for each dimension.

Solving the estimation problem requires the use of more 
complex techniques such as regularization

�(x) = ||Lx� y||22 + �RRPE(x)
Data misfit term Regularization term

Radial dim. Azimuthal dim. Polar dim.

Cost Func.

Discrete matrix form of 
1st and 2nd derivatives



[Cucho-Padin	&	Waldrop,	JGR,	2018]
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Space-state framework approach for “dynamic tomography” 
and Kalman Filter as a solver
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¤ Hydrogen density 
enhancements during the storm 
development. Such increments 
are then translate to higher 
altitudes with certain delay 
which suggest a vertical 
transport or upwelling. 

¤ Using KF we have performed 
160 dynamic reconstructions 
during the storm occurred in 15, 
June, 2008.

H1 H2 H3



¤ Hydrogen density enhancement at 3.2 Re is equal to ~15%.

¤ In the subsolar point, calculations between 3.2Re and 3.9 Re profiles result 
in a exospheric wind of ~60m/s. 

[Cucho-Padin	&	Waldrop,	GRL,	2019]



¤ Dynamic tomography based on TWINS observations shows that  H density 
increases abruptly in response to the geomagnetic storm on 15 June, 2008. The 
increment rate and its magnitude varying with distance from Earth.  

¤ Density increases begin soonest in the innermost exospheric region in the 
reconstruction (3.2 RE) and reach a peak density fastest there.  Overall density 
enhancements of ~15% are observed at 3.2 RE.  Recovery to pre-storm values is 
very slow. 

¤ Also, analysis of the radial structure for the subsolar point yielded a ~60 m/s wind 
in vertical direction.

¤ Further work : 
1. Conduct similar experiments during a strong geomagnetic storm.
2. Use of tomographically-reconstructed H densities in ring current and 

plasmasphere analysis during storm-time. 

Summary
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