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Everyone is a genius. But if you judge a fish by its ability to climb
a tree, it will live its whole life believing that it is stupid.

- Albert Einstein
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Knowledge of exospheric H density is important but
conventional estimation techniques are limited.

What is the topic of study?

® Atomic hydrogen (H) located at the outermost layer
of the Earth’s atmosphere, resonantly scatters
solar Lyman-alpha (121.6nm) radiation

Why do we need to study this topic?

® To understand various solar-terrestrial interactions
such as ring current decaying rate, plasmaspheric
refilling as well as evaluate the permanent H
escape.

i 2], 3
How can we measure the H density? 12 3]

® Direct (in situ) sensing vs. remote sensing. Image sources: [1] NASA Apollo 16 Mission,

[2] https://lcommons.wikimedia.org/wiki/File:AncientMars.jpg ,
[3] http://pics-about-space.com/

Main Goal: Generate a remote sensing technique to estimate the Time-dependent,
3-D Hydrogen density distribution in the exosphere.

ECE ILLINOIS Mitrinors




Hydrogen density estimation leverages the linearity of the
optically thin emission model (>3Rg)
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Example of technique feasibility using the NASA’'s TWINS
mission data (static reconstruction)

® NASA's Two Wide-angle Imaging Neutral-
atom Spectrometers (TWINS) mission
provides the capability for
stereoscopically imaging the
magnetosphere.

® Each TWINS1/2 has two Lyman-alpha
detectors (LAD), optical sensors.

® The selected data in this study is
from 11 June 2008, in order to
compare results with those
reported by Bailey et al., [2011]
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® Since it is quiet tlm_e we assume Source: [Baiey et a, 2011] Ry 5 A
a temporally-static H exosphere.
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Discretization of the exospheric volume of interest yields an
algebraic linear system.

g (r;) [Lmas © Step 2: Project unknown density
I(ri,n;) = —— / ng(1)¥(0;)dl + Irp(h;) function onto J orthonormal basis
W Jo functions.

® Step 1: Discretize region into J ng(r') =Y w;j0m,(r')
spherical voxels. =
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® Step 3: Rewrite ;' measurement
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Solving the estimation problem requires the use of more
complex techniques such as regularization

® Observation matrix I € RM*7 M > J
and is not full column rank (Voxels with >0

out LOS through them).

® Regularization techniques are necessary | ®(x) = ||Lx — y||3 + ARRPE(x)

to obtain a solution.

® The selected regularization method is
Regularized Robust Positive
Estimation.

® Includes prior knowledge of physical
structure of the Hydrogen density
distributions for each dimension.
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x = argmin ®(x)

Cost Func. Data misfit term Regularization term

ARRPE(x) = A\ ||x||p, + Aol|x|| D, + Nol|x|| D

Radial dim. Azimuthal dim. Polar dim.

[x||p, = x" Dy Dyx

S D, =~ 0?/or?
Discrete matrix form o
f5tand 2% derivatives ¢ ~ 0/0¢
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[Cucho-Padin & Waldrop, JGR, 2018]




Space-state framework approach for “dynamic tomography”
and Kalman Filter as a solver

As exospheric H densities are prone to Kalman Filter as solver
be dynamic during storm-time, we use

the state-space model as a means for R R
time-varying estimation: X li—1 > > X |'I,

Measurement equation: Previous Next

y; = Hix; +v; State State
(Initial state)
Model evolution equation:

Xi+1 = Fix; + u; Prediction  Xi+1 Y; Obstgwatic:n for
a time step

Inclusion of regularization terms

I 17w /
y; = H;xi +v;
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Dynamic tomographic estimation connected to the LMMSE estimation
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June 12, 2008 June 13, 2008 June 14, 2008 June 15, 2008 June 16, 2008 June 17, 2008 June 18, 2008
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® Hydrogen density enhancement at 3.2 Re is equal to ~15%.

® In the subsolar point, calculations between 3.2Re and 3.9 Re profiles result
in a exospheric wind of ~60m/s.

[Cucho-Padin & Waldrop, GRL, 2019]
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Summary

® Dynamic tomography based on TWINS observations shows that H density
increases abruptly in response to the geomagnetic storm on 15 June, 2008. The
increment rate and its magnitude varying with distance from Earth.

® Density increases begin soonest in the innermost exospheric region in the
reconstruction (3.2 RE) and reach a peak density fastest there. Overall density
enhancements of ~15% are observed at 3.2 RE. Recovery to pre-storm values is

very slow.

® Also, analysis of the radial structure for the subsolar point yielded a ~60 m/s wind
in vertical direction.

® Further work :
1. Conduct similar experiments during a strong geomagnetic storm.

2. Use of tomographically-reconstructed H densities in ring current and
plasmasphere analysis during storm-time.
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