Dynamic Tomographic Estimation of Global Exospheric Hydrogen Density and its Response to a Geomagnetic Storm

Gonzalo Cucho-Padin*, Lara Waldrop

ECE Department, Remote Sensing and Space Sciences Group **University of Illinois at Urbana-Champaign.** September 19, 2019

gac3@Illinois.edu

Everyone is a genius. But if you judge a fish by its ability to climb *a tree, it will live its whole life believing that it is stupid.*

- Albert Einstein

Knowledge of exospheric H density is important but conventional estimation techniques are limited.

What is the topic of study?

 \odot Atomic hydrogen (H) located at the outermost layer of the Earth's atmosphere, resonantly scatters solar Lyman-alpha (121.6nm) radiation

Why do we need to study this topic?

¤ To understand various solar-terrestrial interactions such as ring current decaying rate, plasmaspheric refilling as well as evaluate the permanent H escape.

How can we measure the H density?

ECE ILLINOIS

⊙ Direct (in situ) sensing vs. remote sensing.

Main Goal: Generate a remote sensing technique to estimate the Time-dependent, 3-D Hydrogen density distribution in the exosphere.

Image sources: [1] NASA Apollo 16 Mission,

[3] http://pics-about-space.com/

[2] https://commons.wikimedia.org/wiki/File:AncientMars.jpg

[2], [3]

 $\boxed{\mathbb{I}}$ i L L I N O I S

Hydrogen density estimation leverages the linearity of the optically thin emission model (>3R_F)

ECE ILLINOIS

$\boxed{\mathbb{I}}$ i L L I N O I S

Example of technique feasibility using the NASA's TWINS mission data (static reconstruction)

- ⊙ NASA's Two Wide-angle Imaging Neutralatom Spectrometers (TWINS) mission provides the capability for **stereoscopically imaging the magnetosphere.**
- ¤ Each TWINS1/2 has two **Lyman-alpha detectors (LAD)**, optical sensors.
- \odot The selected data in this study is from **11 June 2008**, in order to compare results with those reported by Bailey et al., [2011]
- \odot Since it is quiet-time we assume a **temporally-static** H exosphere.

ECE ILLINOIS

Source: TWINS SWRI website

Discretization of the exospheric volume of interest yields an algebraic linear system.

$$
I(\mathbf{r}_i, \hat{\mathbf{n}}_i) = \frac{g^*(\mathbf{r}_i)}{10^6} \int_0^{Lmax} n_H(l)\Psi(\hat{\mathbf{n}}_i)dl + I_{IP}(\hat{\mathbf{n}}_i)
$$

☉ Step 1: Discretize region into J spherical voxels.

ECE ILLINOIS

◎ Step 2: Project unknown density function onto J orthonormal basis functions.

$$
n_H(r') = \sum_{j=1}^{J} x_j \delta_{H_j}(r'),
$$

$$
\delta_{Hj}(r') = \begin{cases} 1 & \text{if } r' \in V_j \\ 0 & \text{else} \end{cases}
$$

 \odot **Step 3:** Rewrite i^{th} measurement of intensity as a linear equation.

$$
y(\mathbf{r}_i, \hat{\mathbf{n}}_i) = \sum_{j=1}^J \left[\frac{g^*(\mathbf{r}_i)}{10^6} \Psi(\hat{\mathbf{n}}_i) \int_0^{Lmax} \delta_{H_j}(l) dl \right] x_j
$$

$$
\mathbf{y} \in \mathbb{R}^M
$$

$$
\mathbf{y} \in \mathbb{R}^M
$$

$$
\mathbf{x} \in \mathbb{R}^J
$$

$$
L \in \mathbb{R}^{M \times J}
$$

$\boxed{\blacksquare}$ I L L I N O I S

Solving the estimation problem requires the use of more complex techniques such as regularization

- $\boldsymbol{\Phi}$ Observation matrix $L \in \mathbb{R}^{M \times J}$, $M \gg J$ and **is not full column rank** (Voxels with out LOS through them)**.**
- **◎ Regularization techniques are necessary** to obtain a solution.
- \odot The selected regularization method is **Regularized Robust Positive Estimation**.
- ¤ Includes prior knowledge of **physical structure of the Hydrogen density distributions** for each dimension.

$$
\hat{\mathbf{x}} = \operatorname*{argmin}_{x \ge 0} \Phi(\mathbf{x})
$$

$$
\Phi(\mathbf{x}) = ||L\mathbf{x} - \mathbf{y}||_2^2 + \lambda RRPE(\mathbf{x})
$$

CostFunc. Data misfit term
Regularization term

$$
\lambda R P E(\mathbf{x}) = \lambda_r ||\mathbf{x}||_{D_r} + \lambda_\phi ||\mathbf{x}||_{D_\phi} + \lambda_\theta ||\mathbf{x}||_{D_\theta}
$$

\nRadial dim. Azimuthal dim. Polar dim.

$$
||\mathbf{x}||_{D_r} = \mathbf{x}^T D_r^T D_r \mathbf{x}
$$

Discrete matrix form of 1st and 2nd derivatives

 $D_r \approx \partial^2/\partial r^2$ $D_{\phi} \approx \partial/\partial \phi$ $D_{\theta} \approx \partial/\partial \theta$

ECE ILLINOIS

 $\boxed{\mathbf{I}}$ I L L I N O I S

Radial Shell $r = 6.375$ Re

[Cucho-Padin & Waldrop, JGR, 2018]

Space-state framework approach for "*dynamic tomography***" and Kalman Filter as a solver**

As exospheric H densities are prone to be dynamic during storm-time, we use the state-space model as a means for time-varying estimation:

Measurement equation: $\mathbf{y}_i = H_i \mathbf{x}_i + \mathbf{v}_i$ Model evolution equation: $\mathbf{x}_{i+1} = F_i \mathbf{x}_i + \mathbf{u}_i$

Inclusion of regularization terms

$$
\begin{bmatrix} \mathbf{y}_i \\ 0 \end{bmatrix} = \begin{bmatrix} H_i \\ D_i \end{bmatrix} \mathbf{x}_i + \begin{bmatrix} \mathbf{v}_i \\ \mathbf{w}_i \end{bmatrix}
$$

Dynamic tomographic estimation connected to the LMMSE estimation

$$
\hat{\mathbf{x}}_{i|i}^d = \underset{\mathbf{x}_i}{\text{argmin}} ||\mathbf{y}_i' - H_i' \mathbf{x}_i||_{R_i'^{-1}}^2 + ||\mathbf{x}_i - \hat{\mathbf{x}}_{i|i-1}||_{P_{i|i-1}^{-1}}^2 + \lambda_{\phi} ||D_{\phi} \mathbf{x}_i||_2^2 + \lambda_{\theta} ||D_{\theta} \mathbf{x}_i||_2^2 + \lambda_r ||D_r \mathbf{x}_i||_2^2
$$

ECE ILLINOIS

Π ILLINOIS

June 12, 2008 June 13, 2008 June 14, 2008 June 15, 2008 June 16, 2008 June 17, 2008 June 18, 2008 40 DST index[nT] $H2$ **H3** $H1$ 20 -20 $-40\frac{1}{0}$ $72h$ $24h$ 48h 96h 120h 144h 160h **H1 H2 H3**90 600 45 Radius = $3.2 R_E$ 500 Latitude 400 H Density [H-at $\overline{0}$ ⊙ Using KF we have performed
160 dynamic reconstructions
during the storm occurred in 15,
June, 2008.
⊙ Hydrogen density
enhancements during the storm
development. Such increments
are then translate to higher
altitudes wi 300 -45 160 dynamic reconstructions 200 -90 during the storm occurred in 15, 90 H Density [H-atoms.cm⁻³] June, 2008. 500 Radius = $3.6 R_E$ 45 400 Latitude $\overline{0}$ 300 -45 200 -90 \odot Hydrogen density 90 H Density [H-atoms.cm⁻³] enhancements during the storm 400 45 Radius = $3.9 R_E$ Latitude development. Such increments 300 $\overline{0}$ 200 are then translate to higher -45 100 altitudes with certain delay -90 which suggest a vertical 90 45 Radius = $4.3 R_E$ Latitude $\overline{0}$ -45 -90 ō 6 $\overline{12}$ $\overline{18}$ $\overline{2}4$ $\overline{0}$ $\overline{6}$ $\overline{12}$ $\overline{18}$ $\overline{2}4$ $\overline{0}$ $\overline{6}$ $\overline{12}$ $\overline{18}$ $\overline{2}4$

Local Time

ECE ILLINOIS

Local Time

Local Time

Π ILLINOIS

 \odot Hydrogen density enhancement at 3.2 Re is equal to ~15%.

⊙ In the subsolar point, calculations between 3.2Re and 3.9 Re profiles result in a exospheric wind of ~60m/s.

[Cucho-Padin & Waldrop, GRL, 2019]

 $\boxed{\mathbb{I}}$ I L L I N O I S

Summary

- ¤ Dynamic tomography based on TWINS observations shows that H density increases abruptly in response to the geomagnetic storm on 15 June, 2008. The increment rate and its magnitude varying with distance from Earth.
- **■** Density increases begin soonest in the innermost exospheric region in the reconstruction (3.2 RE) and reach a peak density fastest there. Overall density enhancements of **~15%** are observed at **3.2 RE**. Recovery to pre-storm values is very slow.
- ¤ Also, analysis of the radial structure for the subsolar point yielded a **~60 m/s** wind in vertical direction.
- ¤ Further work :
	- 1. Conduct similar experiments during a strong geomagnetic storm.
	- 2. Use of tomographically-reconstructed H densities in ring current and plasmasphere analysis during storm-time.

 $\overline{\mathbb{I}}$ illinois

References

Cucho-Padin & Waldrop, *Tomographic Estimation of Exospheric Hydrogen Density* Distributions, Journal or Geophysical Research, 123, 5119-5139, 2018

Cucho-Padin & Waldrop, *Time-dependent Response of the Terrestrial Exosphere to a Geomagnetic Storm*, Geophysical Research Letters, 46, 1-10, 2019

M. D. Butala, R. J. Hewett, R. A. Frazin, and F. Kamalabadi, *Dynamic three*dimensional tomography of the solar corona, Solar Physics, vol. 262, pp. 495–509, 2010

M. D. Butala, R. A. Frazin, Y. Chen, and F. Kamalabadi, *Tomographic imaging of dynamic objects with the ensemble Kalman filter*, IEEE Transactions on Image Processing, vol. 18, pp. 1573–1587, 2009

