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Against the model, the

results are more mixed.

From observations, we know

that in quiet time, the shift

would be undetectable and

only is clear during

turbulent intervals.

Using a Long Short-Term Memory (LSTM) model (Hochreiter and Schmidhuber, 1997) , the

Disturbance Storm Time (Dst) index is predicted 1 to 6 hours ahead. The results gave a high

correlation coefficient and low root-mean-square error comparable with the latest published

results. However, on visual inspection, it was observed that the model behaves as a

persistence model. Because of the high auto-correlation of the Dst, this behavior is not

reflected in the applied metrics. A new metric is proposed, based on the Dynamic Time

Warping algorithm, capable of detecting this type of result.
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DYNAMIC TIME WARPING

The method is based on the Dynamic Time Warping algorithm, which maps two time-series on

each other on a least-distance basis. Originally used to detect patterns in time-series, the

mapping it produces from one series to another can be used to measure the lag the predicted

series has relative to the observed series. The algorithm works as follows:

Given two time series 𝑆 and 𝑄, of size 𝑛 and 𝑚. First, the distance 𝛿(𝑠𝑖 , 𝑞𝑗) between each point is

computed and placed in a 𝑛 × 𝑚 matrix. From this matrix, the distance matrix 𝐷 is computed

by the following equation:

𝐷 𝑖, 𝑗 = 𝛿 𝑠𝑖 , 𝑞𝑗 +min(𝐷 𝑖 − 1, 𝑗 − 1 , 𝐷 𝑖, 𝑗 − 1 , 𝐷 𝑖 − 1, 𝑗 )

From the matrix 𝐷, the warp path 𝑃 can be found by following the path of least cost.

RESULTS

Can we measure this lag?

THE MOTIVATION
A Long Short-Term Memory (LSTM) model is trained to predict the next 6 hourly values of the

the Disturbance Storm Time (Dst) index. This model consist of a single LSTM that is trained on

solar wind parameters (solar wind velocity and density, magnitude and z-component of the

Interplanetary Magnetic Field) and past hourly values of the Dst.

The results are compared to the persistence model (with 𝑎 ∈ ℕ):

𝐷𝑠𝑡 𝑡 + 𝑎ℎ = 𝐷𝑠𝑡 𝑡 ,

which acts as our baseline model, and the models proposed by Gruet et al. (2018) and Lazzús

et al. (2017). The metrics such as the root mean square error (RMSE) and the linear correlation

coefficient (R) indicate strong results, comparable to published results.

However, visual inspection of the results show us something different:

Observation of the result shows that the prediction lags behind with the same amount of hours

it is predicted in advance, effectively failing to predict the Dst and behaving similarly to the

persistence model. The metrics used, however, failed to quantify this problem. This brings us

to the research question:
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The warp path (in green) can be used to determine the time

shift of the predicted model, by computing the distance

from each element of 𝑃 to the diagonal of 𝐷. Let 𝑝𝑘 = 𝑖, 𝑗 𝑘,

then the time shift Δ𝑡 of point 𝑠𝑖 to 𝑞𝑗 is equal to Δ𝑡 = (𝑖 − 𝑗).

𝑃 = 𝑝1, 𝑝2, … , 𝑝𝐾

∀𝑝𝑖 ∈ 𝑃: 𝑝𝑖 → Δ𝑡𝑖

By counting the number of unique values of Δ𝑡𝑖 for each

path and dividing to the path size, the overall time shift of

the prediction can be quantified.

Model

Prediction 0h 1h 2h 3h 4h 5h 6h

T+1h 0.348 0.537 0.063 0.029 0.014 0.006 0.003

T+2h 0.091 0.323 0.437 0.081 0.040 0.020 0.010

T+3h 0.059 0.102 0.284 0.360 0.102 0.058 0.036

T+4h 0.054 0.064 0.109 0.253 0.311 0.113 0.095

T+5h 0.056 0.053 0.071 0.112 0.233 0.287 0.187

T+6h 0.063 0.052 0.059 0.077 0.116 0.218 0.415

Persistence model

Prediction 0h 1h 2h 3h 4h 5h 6h

T+1h 0.003 0.997 0 0 0 0 0

T+2h 0.003 0.003 0.994 0 0 0 0

T+3h 0.004 0.003 0.003 0.99 0 0 0

T+4h 0.004 0.003 0.003 0.003 0.987 0 0

T+5h 0.004 0.003 0.003 0.003 0.003 0.984 0

T+6h 0.005 0.003 0.003 0.003 0.003 0.003 0.98
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Warp

Against the persistence

model, the expected

results are seen, with every

value being shifted with the

respective hour the

persistence model does

𝐷𝑠𝑡 𝑡 + 𝑎 = 𝐷𝑠𝑡(𝑡)
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Persistence Our Model Gruet et al. (2018) Lazzús et al. (2017)

RMSE R RMSE R RMSE R RMSE R

T+1h 5.26 0.978 4.04 0.978 5.34 0.966 4.24 0.982

T+2h 8.11 0.942 5.95 0.951 6.65 0.946 7.05 0.949

T+3h 9.84 0.906 7.44 0.923 7.86 0.923 8.87 0.918

T+4h 11.8 0.871 8.62 0.898 8.86 0.902 10.44 0.887

T+5h 13.1 0.836 9.64 0.873 9.59 0.882 11.65 0.858

T+6h 14.4 0.801 10.57 0.849 10.24 0.865 13.09 0.826

mailto:brecht.laperre@kuleuven.be
http://www.aida-space.eu/

