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The solar far-side magnetic flux is a crucial physical quantity for space
weather forecasting and solar wind modeling, but it is not currently di-
rectly observed. For about 4 years, the extreme ultraviolet (EUV) 304 Å
flux of the far side was observed by STEREO/EUVI, which is used to
produce proxy far-side magnetic flux maps (talk by R. Chen, Monday).
Helioseismic far-side imaging methods are also used to produce far-side
acoustic maps from near-side observations, which indirectly detect large
active regions on the far side; however, these acoustic maps are not cal-
ibrated to magnetic flux. In this work, we use a deep-learning approach
to produce far-side magnetic flux maps in near-real-time using near-side
observations alone. Our neural network is trained on ∼2500 pairs (3.5
years, two pairs of maps per day) of far-side acoustic maps and magnetic
flux proxy maps, and then test on the remaining half year of data. The
final product can then be further calibrated to magnetic flux-transport
maps for additional validation. This neural network will be applied to
future far-side acoustic maps to produce near-real-time far-side magnetic
flux maps, without the need for direct far-side observations.

Background & Motivation
Reliable, near-real-time solar far-side magnetic flux maps are im-
portant for improved modeling of the background solar wind and
the solar wind structure.

The following figure shows two synchronic maps (top) of magnetic field,
one from data assimilation using only a flux transport model (FTM) [6]
and the other after manually incorporating a large AR on the modeled
data at the location of new emergence. The synchronic maps are used to
calculate maps of Squashing factor Q (Q-maps; middle) [7] at a distance
of 2.5 Rsun, employing a potential field source surface (PFSS) model
[e.g. 1; 3; 5]. Q-maps effectively show magnetic topology. Lanes be-
tween opposite-sign (blue and red) regions in the maps represent current
sheets (helmet streamers). Those between same-sign (same color) re-
gions represent coronal hole boundaries (pseudo-streamers). The new
active region (AR) changes the coronal structure significantly: altering
the shapes of the existing pseudo-streamers (B and C), and generating a
new pseudo-streamer (D). The “existing” and new pseudo-streamer are
compared side-by-side with SOHO/LASCO C2 observations (bottom).

Flux transport models.
FTMs effectively progress
observed near-side magnetic
flux around to the solar far
side. They provide reason-
able approximations of the
synchronic, full-sun signed
flux based on assimilated
magnetic data. Unfortunately,
FTMs are incapable of
incorporating either the
growth of existing ARs
or the emergence of new
magnetic flux.

Far-side observations.
There is a quantitative relationship between
304 Å EUV emission and magnetic flux [8].
The STEREO/SECCHI EUVI instruments
provide several years of far-side 304 Å ob-
servations (see example below, bottom).
However, the STEREO spacecraft have al-
ready orbited back around to a separation
angle <90◦ with Earth. Furthermore, com-
munications with STEREO B were perma-
nently lost in Oct 2014, just before it passed
behind the Sun. No current or planned mis-
sions have orbital positions conducive to
consistent observations of the solar far side,
either for magnetic fields or EUV proxies.
There is no guarantee of future observa-
tions.

STEREO A & B spacecraft
as of 2019-Sep-12 21:00 UT

Credit: STEREO Science Center

Helioseismic imaging.
Helioseismic techniques
are also used to image the
far side. These techniques
include acoustic holography
(middle) [2; 4] and time-
distance methods [9]. These
maps show the location and
size of far-side ARs, but both
methods often give spurious
signals. We recently devel-
oped a new time-distance
technique that increases the
acoustic resolution of the far
side maps (top) [10]. How-
ever, all acoustic maps are
measures of wave travel-time
perturbations. None of these
data are calibrated into
magnetic flux.

Data & Preparation
There are several overarching steps necessary to calibrate acoustic maps
to far-side magnetic flux maps: (bold teal indicates focus of poster)
1. Generate far-side acoustic travel-time maps 33

2. Use deep neural net to learn relationship between EUV and magnetic
flux – using near-side images 33

3. Apply learned EUV⇔magnetic-flux relationship to far-side EUV
images to get far-side magnetic flux proxy images 3

4. Use deep neural net to learn relationship between far-side
magnetic-flux proxy and far-side acoustic maps (current)

5. Apply learned far-side acoustic⇔magnetic-flux-proxy relationship to
near-real-time acoustic maps

3-skip wave:
1×2-scheme

6-skip wave:
2×4-scheme

4-skip wave:
1×3-scheme

8-skip wave:
2×6-scheme

4-skip wave:
2×2-scheme

6-skip wave:
3×3-scheme

8-skip wave:
4×4-scheme

5-skip wave:
2×3-scheme

Producing far-side acoustic maps. Waves that get reflected within a far-side AR ex-
perience a reduction in their total travel times, which can be measured using near-side
waves to show the location, size, and perhaps magnetic-field strength of the far-side
AR. Our new far-side time-distance technique takes advantage of helioseismic geome-
try for different “skip” waves (number of surface reflections; e.g., some 6- and 8-skip
waves have the same far-side sensitivity geometry as 4-skip 2x2-scheme waves). We
ultimately use 14 total sets of individual wave measurements to build up maps of acous-
tic wave travel-times across the far-side of the solar disk. The higher acoustic resolution
requires less time-averaging for reliable signal-to-noise.

Machine learning between SDO/AIA and SDO/HMI. In order to convert far-side
EUV 304 Å images to magnetic flux proxy data, we first train on corresponding near-
side EUV 304 Å and magnetic flux images. We use a Unet deep learning architecture,
trained on 4 image pairs of EUV and magnetic flux per day using 8 years of data from
2010-May 1 to 2018-Apr-30, a total of ∼11, 000 examples. Data are split into a train-
ing set, devel. set (4%), and test set (4%). 15 days are blocked before and after each
devel./test set, to prevent the same ARs from appearing in both the training set, and de-
velopment and test sets. The trained deep neural network reproduces the magnetic
flux in great detail from the EUV 304 Å flux, with a correlation of about 0.9. The
above example shows (a) an AIA 304 Å image (input), (b) the learned magnetic-flux
proxy image (output), and (c) the actual HMI magnetic flux image (target).

Prepped far-side data. Our far-side data sets are STEREO A & B EUVI 304 Å im-
ages (top), derived STEREO A & B magnetic-flux proxy images (middle), and far-
side acoustic images (bottom); this example is from 2014-May-13 00:00 UT. Both
time-series range from 2010-May-13 00:00 UT–2014-Aug-18 12:00 UT (limited by
availability of STEREO data). We include 2 observations per day (midnight & noon;
UTC). After “bad” data are removed from the training set (partial images, flare occur-
rences, etc.), we ultimately train on a total of ∼2500 pairs of images. Our maps have
dimensions of 2555121 (limited by the spatial resolution of acoustic maps). All im-
ages are in the form of far-side Carrington maps, using Carrington longitude (central
meridian fixed at 0◦; between ±90◦) and sin(latitude) between ±60◦. STEREO EUVI
images have been: 1) calibrated through the SSW IDL routine SECCHI prep.pro (with
optional rotation and smask corrections), 2) scaled to AIA 304 Å flux (including AIA
sensitivity degradation), 3) merged (A & B) to create one far-side Carrington map per
time step, 4) transformed into magnetic-flux proxy images using machine-learned al-
gorithm, and 5) pixel-scaled to match acoustic data parameters (e.g., pixel size).

Machine Learning Framework

Unet deep neural network architecture. For the far-side data, we use a Unet neural
network model similar to that used for the near-side EUV⇔magnetic-flux training al-
gorithm. Unet combines local and global spatial information effectively. Because
of the relatively small training set and the lower dimensionality of the images, we use
fewer convolutional layers in this framework than were used for the near-side archi-
tecture. A rectified linear unit (ReLU) non-linear mapping is applied after each 3×3
convolution, followed by a 2×2 maxpool downsampling. Through each downsampling
step, feature channels are doubled. After the lowest convolutional layer, 2×2 convo-
lutional upsampling is applied. Between each upsampling step, we concatenate the
upsampled and downsampled channels of that convolutional layer, and perform a 3×3
convolution followed by a ReLU. Through each upsampling step, feature channels are
halved. The final output map has the same dimensions as the original input map.

Initial Results
Note, these results are very preliminary! We have not yet compared
between the output predictions and target images, or tweek our ini-
tial Unet framework to improve performance. However, the results
are promising!

ML input, output, and target. The results shown here are from the first training at-
tempt between our input and target data sets, using the ML framework above. These
maps correspond to the solar far-side on 2011-Sep-24 12:00 UT. The output magnetic-
flux map predicted by our trained algorithm (middle) has the same spatial resolution
as the input acoustic map (top). The general shapes, sizes, and locations of the pre-
dicted ARs, as well as the field strength of the larger ARs, correspond reasonably
well with the target magnetic-flux proxy map (bottom). The gap in the center of
the target map is due to the separation angle between STEREO A & B at the time.
This region of missing observations has been masked out of the loss function using an
appropriate weighting scheme.

Next Steps
• Determine statistics for initial training iteration

• Tweek initial Unet framework to improve performance

• Finalize far-side data preparation

• Apply learned far-side acoustic⇔magnetic-flux-proxy relationship to all acoustic
maps (May 2010–present, continued into future).

• Develop associated uncertainty maps
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