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Abstract

We attempt to improve on the forecast of the so-
lar surface’s longitudinal average of the absolute
value of the magnetic field, by using a form of
spatial-temporal neural networks. Given that the
recording of this dataset only started in 1975 and
is therefore quite short, we employ another ma-
chine learning technique called transfer learning
which has received considerable attention in the
literature. This approach consists in first train-
ing the spatial-temporal neural network on the
much longer dataset (sunspot area data), which
starts in 1874, then transferring the trained set of
neural network layers and continue training the
network on the magnetic flux dataset.

Introduction

While sunspots have been observed since ancient
times and have been recorded systematically since
the introduction of the telescope in the early 1600s,
the actual physical phenomena that presumably
originates the sunspots, the solar surface magnetic
field, has only been observed consistently since
the early 1970s. Both datasets now encompass
spatial-temporal dimensions, and the sunspot set
is usually depicted in time versus latitude, the so
called sunspot butterfly diagram. The solar sur-
face magnetic field “butterfly diagram” equivalent
dataset is available since 1974. While most so-
lar cycle forecasting focus on the temporal dimen-
sion only, there are some examples of attempts
to forecast the sunspot butterfly diagram in both
latitude and time, i.e., spatial-temporal forecast
[Covas, 2017, Jiang et al., 2018, Covas et al., 2019].
Here we apply the technique of transfer learning
to forecasting the solar surface’s longitudinal aver-
age of the absolute value of the magnetic field by
first training a deep neural network on the larger
source dataset (sunspot areas), and then transfer-
ring wholly or partially the weights of the trained
network to the target one and applying it to the
target dataset (magnetic field).

Model

Our neural network follows on the approach in-
troduced in [Covas et al., 2019], which draws on
an technique based on spatial-temporal embeddings
[Parlitz and Merkwirth, 2000, Covas, 2017]. We
start with a spatial-temporal series sn

m. The em-
bedding vectors x(sn

m) are constructed using:
x(sn

m) = {sn
m−IK, . . . , sn

m, . . . , sn
m+IK, (1)

sn−L
m−IK, . . . , sn−L

m , . . . , sn−L
m+IK, . . .

. . . , sn−JL
m−IK, . . . , sn−JL

m , . . . , sn−JL
m+IK},

where K and L represent the spatial and temporal
delays and 2I is the number of neighbours in space
and J is the number of neighbours in time. The neu-
ral network takes as input these embedding vectors
and as target the value of sn+1

m . Transfer learning
[Caruana, 1995] is a technique whereby one trains a
neural network on a larger dataset, and then trans-
fer part or the whole set of layers to another network
which is then re-trained on a smaller dataset. The
intuition is that once trained the higher layers have
acquired the ability to detect generic features and
this will be useful on the subsequent task.

weights 
copied

source
network

target
network

x

x

y

y

weights 
discarded 

Figure 1:Schematic transfer learning architecture. The source
neural network is trained first (on the sunspot area data). Then
the first few layers are copied to the target network (in blue),
while the other weights (in red) are discarded and new ran-
domly initialized weights are created (in green). The target
network is then re-trained on the magnetic field data.

Results

Figure 2 shows our first result, showing the global
error during training, as measured by the global cost
function Lg = 1

2
∑∥∥∥∥ypred − y

∥∥∥∥2, where ypred is the
predicted value of the neural network and y = sn+1

m

is the target value. It shows how the global error
convergence improves with transfer learning.
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Figure 2:Error function (for the whole training set) on the tar-
get network with and without transfer learning.

In order to quantify the accuracy of our forecasts, we
use the Structural Similarity Index (SSIM), which is
widely used in computer vision [Wang et al., 2004].
It has values SSIM ∈ [0, 1] and a value of one occurs
when one calculates it between two identical images
or datasets. The results in Figure 3, obtained using
different transfer learning techniques, show that one
can improve the forecast by using prior knowledge
obtained using the sunspot dataset.
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Figure 3:Results of transfer learning against the pure fore-
cast without it. Results improve as one starts using trans-
fer learning, and they improve even further with fine-tuning
allowed and with a regularization that forces the fine-tuning
not to deviate too much from the source network knowledge
[Li et al., 2018].

Conclusion

We use the technique of transfer learning to enhance
the performance of spatial-temporal forecasts of the
solar surface’s longitudinal average of the absolute
value of the magnetic field. As the length of this
data is quite short, it is quite difficult to forecast
with a reasonable precision. However, if we use the
sunspot area dataset, available for much longer than
the magnetic field data, to first train a source net-
work and then transfer the whole or part of the layers
to the target network, we can enhance the forecast
and obtain higher values of the SSIM accuracy in-
dex.
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